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A B S T R A C T   

We use administrative panel data from seven states covering nearly 3 million students to document and explore variation in “academic mobility,” a term we use to 
describe the extent to which students’ ranks in the distribution of academic performance change during their public schooling careers. We find that student ranks are 
highly persistent during elementary and secondary education—that is, academic mobility is limited in U.S. schools on the whole. Still, there is non-negligible 
variation in the degree of upward mobility across some student subgroups as well as individual school districts. On average, districts that exhibit the greatest up-
ward academic mobility serve more socioeconomically advantaged populations and have higher value-added to student achievement.   

1. Introduction 

An effective and equitable education system can be viewed as a form 
of social insurance against a poor birth endowment—even in the face of 
considerable obstacles, access to effective schools can provide a pathway 
to success. However, the performance of the U.S. education system in 
this regard leaves much to be desired. Students from different socio-
economic backgrounds enter K-12 schools already exhibiting large 
achievement gaps and these gaps persist, or even widen, as they progress 
through school (Haskins and Rouse, 2005; Jang and Reardon, 2019; 
Reardon, 2011). It would be a mistake to conclude U.S. public schools do 
not contribute to social equity (counterfactual equity conditions would 
almost surely be worse in their absence), but the inability of schools to 
narrow achievement gaps during elementary and secondary education is 
an ongoing policy concern. 

In this article, we introduce the concept of “academic mobility” to 
study the persistence of student placements in the distribution of aca-
demic performance during elementary and secondary education. An 
education system with high academic mobility is one where students’ 
early-grade ranks are less predictive of their later-grade ranks. We es-
timate academic mobility using administrative panel data from seven 
states covering almost 3 million students. 

Our estimation procedures borrow from tools developed in a related 
literature on economic mobility including Chetty, Hendren, Kline, and 
Saez (2014) and Chetty, Hendren, Jones, and Porter (2018).1 We assess 
students’ initial performance levels using test scores in the third grade, 
which is the earliest grade we have universal data on test performance in 
public schools. Then, we use four long-term outcomes to estimate aca-
demic mobility during K-12 education: eighth-grade test performance, 
high-school test performance, on-time high school graduation, and high 
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school graduation within one year of on-time. For most of our analysis 
we focus on upward mobility among initially low-achieving students. 
Again following the recent literature on economic mobility, we define 
“absolute upward mobility” as academic mobility measured at the 25th 
percentile of the distribution of initial performance ranks. 

We find that students’ ranks in the distribution of academic perfor-
mance are highly persistent during K-12 education. It follows that ab-
solute upward mobility is low. For example, on average across our seven 
states, a student at the 25th percentile of the academic performance 
distribution in the third grade can be expected to perform at roughly the 
30th percentile by high school. Moreover, conditional on beginning with 
a low rank, students from more advantaged backgrounds generally have 
greater upward mobility than their less advantaged peers. Asian stu-
dents in particular have very high upward mobility. These results 
buttress existing research on the persistence, and even widening, of 
achievement gaps during K-12 schooling. 

We also explore variation in academic mobility across school dis-
tricts. Despite finding academic mobility is low on average, we docu-
ment statistically and economically significant variance in upward 
mobility across districts. We decompose the variance into two compo-
nents: “baseline mobility” and “relative mobility.” Districts with high 
baseline mobility promote gains throughout the performance distribu-
tion; initial low achievers are caught in a rising tide that lifts all boats in 
these districts. In districts with high relative mobility, initial low 
achievers gain on their higher-achieving peers as they progress through 
school—i.e., the within-district achievement gap narrows over time.2 

Variation across districts in both components contributes to the total 
variance in absolute upward mobility, but we find that most of the 
variance in upward mobility is driven by cross-district differences in 
baseline mobility. While our mobility metrics are descriptive and should 
not be interpreted causally, these results are informative about the ways 
in which districts are likely to help low-achieving students improve. The 
low variation in relative mobility suggests limited differences in success 
across districts at reducing within-district achievement gaps. 

We also explore the correlates of absolute upward mobility at the 
district level and show mobility is largest in districts serving more so-
cioeconomically advantaged students. For instance, mobility is higher in 
districts where local-area incomes, education levels, and residential 
stability are higher, and where more Asian and White families live. In-
dependent of these attributes, district value-added to student achieve-
ment is also a strong predictor of high upward mobility. When we 
estimate district-level academic mobility separately for Black, Hispanic, 
and low-income students to allow for heterogeneity in the correlates of 
mobility, we generally find the same factors predict upward academic 
mobility for all students. 

2. Data and measurement of academic mobility 

2.1. Data 

We use state administrative panel data from public schools in seven 
states—Georgia, Massachusetts, Michigan, Missouri, Oregon, Texas, and 
Washington. We assemble cohorts of all students with standardized test 
scores in math and English language arts (ELA) in the third grade and 
follow them through high school. 

Table 1 reports descriptive information for the third-grade cohorts in 
each state, as well as for K-12 students in the entire U.S. for comparison. 
We track academic mobility for two to four cohorts of students in the 
sample states between 2005 and 06 and 2008–09 (hereafter, including 
in Table 1, we identify school years by the spring year; e.g., 2006 for 
“2005–06”).3 Our analysis includes about 2.9 million students. The 
sample states exhibit substantial heterogeneity in their populations. For 
example, the shares of Black and Hispanic students across states range 
from 3.0 to 38.1 and 4.0 to 47.7, respectively. There is also considerable 
variation across states in the shares of students: receiving free or 
reduced-price lunch (FRL), identified for an Individualized Education 
Program (IEP), and who are geographically mobile.4 In addition, the 
structure of the education system differs across states in terms of the 
shares of schools located in urban/suburban/rural areas, and the 
numbers of districts and schools, both in absolute and per-capita terms. 
While our sample is not representative of the United States, the seven 
states are diverse and provide substantively different evaluation 
contexts.5 

Under the No Child Left Behind and Every Student Succeeds Acts, all 
students in public schools are tested in math and English Language Arts 
(ELA) annually in grades 3–8. As a result, our analysis of academic 
mobility between grades 3 and 8 is fairly uniform across states (although 
each state administers its own tests). At the high school level, students 
must be tested at least once but there is flexibility over the grade and 
subject. To assess academic mobility based on high-school achievement, 
in each state we identify the exam with the highest coverage rate 
administered in a common grade. These tests are shown in Table 2.6 

With the exception of Michigan, which has a universal ACT/SAT policy, 
the common-grade requirement is such that the test subject is ELA- 
based. This is because the high school English curriculum is more 
rigid than in other subjects. The focal tests are administered mostly in 
the tenth and eleventh grades (except in Georgia), have high coverage 
rates, and are overwhelmingly taken in a common grade. In Oregon 
there is no test given overwhelmingly in a common grade in high school, 
so we omit Oregon from the portion of the analysis focused on high 
school test ranking. 

In addition to assessing test-based academic mobility, we also assess 
mobility in terms of the likelihood of high school graduation. We 
consider both on-time graduation and graduation within one year of on- 
time. 

2.2. Measuring academic mobility 

2.2.1. Overview 
Our methodological approach follows the framework developed by 

Chetty, Hendren, Kline, and Saez (CHKS, 2014) and Chetty, Hendren, 
Jones, and Porter (CHJP, 2018) to study intergenerational economic 

2 Both a student’s absolute position in the performance distribution and a 
student’s relative position within a class, school, or district are important 
outcomes of interest. A student’s absolute position is important given causal 
evidence on the link between test scores and later life outcomes (Goldhaber and 
Özek, 2019). There is also increasing evidence that a student’s relative rank has 
independent effects on student behaviors and outcomes, as social comparisons 
help to shape ability beliefs. See, for instance, Cicala et al. (2018), Denning 
et al. (2020), Elsner and Isphording (2017a, 2017b), Elsner et al. (2019), and 
Murphy and Weinhardt (2020). 

3 The earliest cohort is from 2006 because this is the first year of consistent 
testing in grades 3–8 in most states, and the latest cohort is from 2009 because 
this is the oldest cohort for whom we can track graduation outcomes (within 
one year of on-time graduation) using our data panels.  

4 Geographic mobility is defined by students who are enrolled in more than 
one school during the year in which they took the third grade test. States differ 
in terms of the frequency of collecting school enrollment information, which 
may account for some of the heterogeneity across states in this variable. The 
FRL data used for these cohorts pre-date the option of schools to use the 
Community Eligibility Provision (Koedel and Parsons, 2021).  

5 Appendix Table A1 further shows that enrollment shares in charter schools 
in our third-grade cohorts is small in all states, ranging from 0 to 7.7 percent, 
with a median value of 1.8 percent.  

6 The requirement of a common grade limits concerns about the confounding 
effect of test timing on our cross-district measures of academic mobility, which 
has come up most often with respect to studies of Algebra-I end-of-course exam 
performance (Clotfelter, Ladd, and Vigdor, 2015; Domina et al., 2015; Parsons 
et al., 2015). 
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mobility. The test-based mobility metrics we use link percentile rankings 
in the test distribution at different points in the schooling career. Like 
CHKS and CHJP, we have sufficiently rich data to describe the joint 
distribution of early- and late-career student performance nonpara-
metrically in the form of 100x100 percentile matrices for each outcome 
and state. However, a key insight from CHKS that permits a more 
parsimonious presentation is that the rank-rank relationship between 
intergenerational economic outcomes is functionally linear. This is also 
true in our application, allowing us to summarize academic mobility 
with just the slope and intercept parameters from a linear regression. 

We illustrate the linearity of the rank-rank relationships using binned 
scatterplots of students’ entry and late-outcome test ranks in each state. 
Fig. 1 shows scatterplots from Georgia as an example. The top two 
graphs are for test scores. The entry ranks on the horizontal axis are the 
average rank in math and ELA in the third grade. The outcome ranks on 
the vertical axes are: (1) the average rank on math and English Language 
Arts (ELA) tests in the eighth grade and (2) the rank on the high school 
test listed in Table 2. Similar graphs for all sample states are provided in 
Appendix Figure A1. 

The test-based rank-rank relationships are linear, at least to a close 

approximation, in all states for all tests (we discuss the scatterplots for 
graduation outcomes below). Given this, the mapping between students’ 
early- and late-career outcomes can be summarized by equation (1): 

Oi = α+ βRi + εi (1) 

where Oi is a late-career outcome rank for student i and Ri is the 
initial rank in the third grade. 

When the rank-rank relationship is estimated on the entire popula-
tion (in our case, an entire state), α and β are mechanically linked. To see 
why, note the estimated regression line must pass through the mean of 
the data, which in a percentiles-on-percentiles model means it must pass 
through (50, 50). As a result, the mobility relationship is fully captured 
by the slope coefficient, β, which also defines the y-intercept, α. 

When we disaggregate the data below the state level—i.e., for sub-
populations of students within a state or for individual school dis-
tricts—the parameters α and β are separately identified and provide 
unique information about baseline and relative mobility, respectively. 
This is because the rank-rank regression line need not pass through the 
point (50, 50) for each subpopulation. Consider the following versions of 
equation (1) that permit subgroup analyses: 

Ois = αs + βsRis + εis (2)  

Oid = αd + βdRid + εid (3) 

In equation (2), the subscript s indicates group membership for stu-
dent i. We define groups s by race/ethnicity, FRL eligibility, and the 
urbanicity of the school attended in the third grade (urban, suburban, or 
rural). In equation (3), the subscript d identifies students who attend 
district d in the third grade. As long as the dependent and independent 
variables in equations (2) and (3)—which are in percentiles—continue 
to be calculated from the full statewide distributions of test scores, the 
intercepts and slopes for the groups indexed by s and d are separately 
identified and provide unique information about the nature of academic 
mobility. 

Total academic mobility at initial percentile p, inclusive of baseline 
and relative mobility, can be expressed for district d as follows: 

Ōpd = αd + βdp (4) 

Similarly, Ōps gives the student-subgroup analog. Like in CHKS, we 
focus on total mobility of students at the 25th percentile of the initial 
performance distribution to produce measures of absolute upward 
mobility for initially low-achieving students, denoted by Ō25. From 
equation (4), Ō25 for students in district d is estimated by α̂d + β̂d*25. 

It is straightforward to interpret a higher value of baseline mobility 
(α) as a positive attribute, but the same is not true of relative mobility 

Table 1 
Definition of the analytic sample and descriptive statistics at panel entry for each state.   

Cohort 
Years 

N 
(entry 
cohorts) 

Pct. 
Black 

Pct. 
Hispanic 

Pct. 
FRL 

Pct. 
IEP 

Pct. 
Mobile 

Pct. 
Urban 

Pct. 
Suburban 

# of 
Districts 

# of 
Schools 

Private Schl Enrl 
% 
(2008) 

Georgia 2007–2009 376,427  38.08  12.72  56.02  12.47 8.12  8.81  39.66 182 1255 8.71 
Massachusetts 2007–2008 139,337  7.83  13.94  31.65  17.30 2.32  20.11  68.19 304 1,116 13.60 
Michigan 2006–2009 453,946  19.03  5.72  40.99  10.92 12.19  20.96  44.39 755 2,039 8.59 
Missouri 2006–2009 264,612  18.17  4.00  46.34  15.16 6.62  18.79  30.87 548 1,200 12.05 
Oregon 2006–2008 123,833  3.03  16.83  47.59  15.37 4.03  30.69  25.60 208 1,086 10.49 
Texas 2006–2009 1,309,114  13.54  47.68  57.84  5.86 6.68  42.27  27.90 1,173 4,338 5.96 
Washington 2006–2008 218,051  5.70  15.80  42.26  11.44 1.04  26.12  45.30 296 1,254 9.17              

Entire U.S. 2008 –  17.04  21.13  42.95  12.35 –  29.03  35.10 – – – 

Table Notes: “Cohort Years” refers to the years of panel entry for the cohorts included in the analytic sample; i.e., the years in which the students were in the third 
grade. The spring year is used to indicate the academic year (e.g., 2009 = 2008–09 school year). Students who took both the Math and ELA third-grade state tests are 
included in the core sample. For Washington and Massachusetts, in earlier years of data, enrollment surveys were not conducted frequently, which likely contributes to 
the low reported mobility rates in those two states. In more recent data, the mobility rates in Massachusetts and Washington are around 5 and 8–9 percent, respectively. 
Note that the numbers of schools and districts indicate the numbers of unique schools and districts included in the analysis in each state. Data for the “Entire U.S.” are 
reported in the bottom row of the table for context and taken from the 2008 common core of data and are for students in public K-12 elementary and secondary grades. 
Note that we do not report a mobility percentage because a comparable variable is not available in the common core of data. 

Table 2 
High school exams by state.   

HS Exam Grade 
Typically 
Taken 

Pct. Of Cohort 
Students 
Taking the 
Exam On- 
Grade 

Pct. Of Cohort 
Students Taking 
the Exam Within 
1 Year of On- 
Grade 

Georgia Literature 
EOC 

9  97.7  2.0 

Massachusetts MCAS ELA 10  99.5  0.2 
Michigan ACT/SAT 11  99.3  0.7 
Missouri English II 

EOC 
10  93.1  3.8 

Oregon Not Applicable 
Texas Reading/ 

English II 
EOC 

10  94.1  5.7 

Washington HSPE ELA, 
SBAC ELA 

10, 11  98.3  1.4 

Notes: In Washington, a test change led to the change in the grade in which the 
third-grade cohorts took their high school exit exams (from grade 10 to 11), as 
shown in the Table. Michigan transitioned from the ACT to the SAT in the 
2016–17 school year. The first two analysis cohorts took the ACT in 11th grade; 
the second two cohorts took the SAT in 11th grade. In Oregon, there is no single 
high school test given to more than 90 percent of students in a fixed grade to 
support our analysis of mobility using HS test achievement. 
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(β). For instance, consider two districts where initially low-achieving 
students perform similarly. The district with higher relative mobility 
will be the one where initial high achievers perform relatively worse. 
Many researchers and education systems use the district achievement 
gap as a measure of performance, but this is an insufficient measure due 
to the potential tradeoff between inequality and the outcome level for 
initial low achievers. A rightward shift in the entire achievement dis-
tribution that is more pronounced at higher achievement percentiles 
would increase both the achievement gap and the expected outcome 
percentiles for initial low achievers, while a leftward shift in the entire 
distribution that is again more pronounced at the upper percentiles 
would reduce both the achievement gap and the expected outcome 
percentiles for initial low achievers. 

Finally, we turn to the application of this framework to analyze 
graduation outcomes. Although graduation is a binary outcome, the 
academic mobility parameters are conceptually similar in the gradua-
tion models (CHKS, 2014). For example, Ō25d for on-time graduation 
indicates the likelihood of high-school graduation for a student at the 
25th percentile of the third grade performance distribution from district 
d. This likelihood can be compared to the likelihood of graduation for a 
student in the 25th percentile in district c to compare mobility across 
districts measured by graduation. 

The bottom graphs in Fig. 1 show binned scatterplots mapping stu-
dents’ entry percentiles to their graduation outcomes in Georgia and 
Appendix Figure A1 shows similar scatterplots for the other states. The 
plots are roughly linear throughout most of the initial rank distribution 

(about the upper 80 percent). The nonlinearity at lower entry percentiles 
is due to a combination of strong floor effects and the fact that gradu-
ation is a binary outcome. 

2.2.2. Estimation details 

2.2.2.1. Measurement error in Students’ initial test scores. The initial 
percentile ranks are based on students’ third grade scores on high-stakes 
state tests. These tests meet the highest standards of test publishers in 
terms of their reliability, but they are not error-free.7 Measurement error 
in these tests comes from two broad sources (Boyd et al., 2013; Lock-
wood and McCaffrey, 2014): (1) the tests rely on a finite number of 
questions to assess student knowledge, making student scores subject to 
test-item sampling variance, and (2) idiosyncratic factors associated 
with student or test circumstances on the day of the test (e.g., the pro-
verbial dog barking in the parking lot). 

Measurement error in students’ initial scores will result in mean 
reversion. If left unaccounted for, this will lead us to overstate academic 
mobility. To illustrate consider an extreme scenario where initial scores 
are comprised entirely of error. Under the standard assumption that the 
error is uncorrelated with the outcome, the expected value of β would be 

Fig. 1. Binned scatter plots with percentile ranks on the 3rd grade test on the horizonal axis (averaged across math and ELA), and either test-outcome percentiles or 
graduation rates on the vertical axis, in Georgia. Notes: This figure shows binned scatterplots of the raw (binned) entry and outcome ranks in Georgia. Appendix A 
shows similar scatterplots for all other states and all outcomes. 

7 The test reliability estimates in our sample states are consistently around 
0.90 or above, which is at the upper end of the recommended range in the 
psychometrics literature (Tavakol and Dennick, 2011). 
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zero, implying perfect academic mobility. More generally, measurement 
error in students’ initial scores will attenuate our estimates of β and 
correspondingly inflate our estimates of α.8 

Within the context of a latent-ability framework, we use two ap-
proaches to address the measurement error problem. Both leverage the 
fact that we observe two different measures of skill in the third grade 
from the math and ELA tests. Each measure can be written as a function 
of general skill, an orthogonal subject-specific skill, and an error. 
Formally, we write: 

SM
i = Si +Mi + eM

i (5)  

SE
i = Si +Ei + eE

i (6) 

where SM
i and SE

i are observed test scores for student i in math (M) 
and ELA (E), respectively, Si is general skill, Mi and Ei are subject specific 
skills constructed to be orthogonal to Si, and eM

i and eE
i are test-specific 

random measurement errors. eM
i and eE

i are assumed to be mean-zero 
and independent. 

Our preferred error correction is a two-step procedure where we first 
average the third-grade ranks in math and ELA to set the initial rank. By 
averaging the two noisy measures, the error variance is reduced. Then, 
we make an additional correction to remove error deriving from the 
testing instruments themselves—i.e., due to sampling variance in the 
items that appear on the tests. Our correction is based on test reliability 
ratios reported by test publishers, which we incorporate into our models 
using a standard errors-in-variables (EIV) regression framework. The 
EIV models disattenuate β by the expected value of the attenuation bias 
caused by the measurement error (and correspondingly shrink α). Pro-
cedurally, the error variance is subtracted from the total variance in the 
initial ranks to calculate the error-adjusted parameter β (Fuller, 1987; 
Lockwood and McCaffrey, 2014). 

A complication is that we use the average of the entry ranks as the 
initial rank variable, but the reliability ratios from test publishers are for 
the individual tests. Define rm and re as the reliability ratios for the third 
grade math and ELA tests individually, and θm,e as the correlation of 
performance on the two tests. Following Wang and Stanley (1970), the 
reliability of average performance across the two tests is given by: rc =
0.25rm+0.25re+0.50θm,e

0.50+0.50θm,e 
. We use reliabilities based on this equation in our EIV 

models for each state.,910 

Our approach to adjust for measurement error has strengths and 
weaknesses. A key strength is that it is more efficient than available 
alternatives—namely instrumental variables (IV), which we discuss 
below—resulting in more precise estimation. This is especially impor-
tant when we estimate mobility parameters for each district individu-
ally. However, it is not a comprehensive correction and has two notable 
limitations. First, the averaging strategy, while conceptually appealing, 
is incomplete since we observe just two scores (Ashenfelter and Krueger, 
1994). And while the EIV correction helps, it only addresses measure-
ment error associated with the testing instruments and ignores other 
sources of error. Therefore, we do not expect our estimates of β to be 
fully disattenuated; rather, they are lower-bound estimates. This means 

the EIV specifications will overstate relative academic mobility to some 
degree (recall that a lower value of β corresponds to more academic 
mobility). The second limitation is that the EIV approach does not allow 
for subgroup heterogeneity in the magnitude of measurement error (the 
publisher-reported test reliabilities are averages across all students and 
not available for student subgroups). For instance, below we compare 
academic mobility between FRL and non-FRL students. If the magnitude 
of measurement error is larger for one of these groups, it could confound 
the comparison. A similar problem exists for other comparisons, 
including across school districts. 

We assess the severity of these concerns by replicating our entire 
analysis using instrumental variables to correct for measurement error. 
We estimate our IV models by first specifying the math score as the 
primary independent variable, with the ELA score serving as the in-
strument. Next, we duplicate the dataset and flip the positions of the 
third-grade tests so the ELA score is the independent variable and the 
math score is the instrument. Then we stack the duplicated dataset and 
estimate two-stage-least-squares models on the stacked dataset, with 
standard errors clustered by student to account for the duplication. This 
procedure yields first-stage error correction coefficients that are aver-
ages of the coefficients obtained when each test is individually specified 
as the independent variable and instrument, respectively. 

The IV approach addresses the two main limitations of the EIV 
approach. First, the IV error correction is not confined to addressing a 
specific type of measurement error, making it more comprehensive than 
the EIV correction based on the test reliability ratios. Second, the IV 
approach allows for subgroup heterogeneity in measurement error—for 
instance, if FRL students have more error in their test scores than non- 
FRL students, the IV models for FRL students will make a stronger 
correction. 

But while these theoretical benefits make the IV approach appealing, 
it also has limitations. The exclusion restriction in the specification 
where the 3rd grade ELA score is an instrument for the 3rd grade math 
score relies on the assumption that 3rd grade ELA score is only related to 
the outcome through its relationship with the general skill component of 
the 3rd grade math score. However, if the subject specific ELA skill in 
3rd grade (Ei in Equation (6)) also has a direct relationship with the 
outcome, the exclusion restriction would be violated. This would likely 
inflate the estimates of β because the subject-specific skill in third grade 
would be positively related to skill in the future; the same holds in 
specifications where the 3rd grade math test serves as the instrument for 
the 3rd grade ELA test. In addition, the IV models are substantially less 
efficient.11 

The IV analogs to all results that follow in the main text are reported 
in Appendix B. At a high level, two themes emerge in comparing the EIV 
and IV results. First, as expected, the EIV estimates of β are smaller, on 
average, than the IV estimates, though they are at least 0.80 for the 
eighth grade and high school tests in all states. Thus, despite providing 
lower-bound estimates of β, the EIV coefficients show limited mobility. 
Second, while the mobility parameters differ to some degree across 
methods, our comparative findings are upheld substantively using either 
approach. That is, the gaps in academic mobility by student character-
istics, and the variance in academic mobility across school districts, are 
similar. This suggests that while conceptually concerning, in practice the 
potential for measurement-error heterogeneity to confound our com-
parisons is limited. 

Finally, for completeness, we also estimate models where we set the 
initial rank using the average of the third-grade math and ELA ranks but 
do not use the reliability ratios to correct for test measurement error. As 
expected, our estimates of β are consistently smallest using this 
approach, although even in these models our comparative findings 
remain similar. Results using this third approach are shown in 

8 Test measurement error in the post-tests is not of concern because it passes 
through to the error term (assuming it is uncorrelated with prior test perfor-
mance and prior measurement error, which is standard). 

9 The applicability of test-reliability ratios when the data undergo a mono-
tonic transformation (in our case, from scale scores to percentile ranks) depends 
on several factors and is the subject of some debate in the literature (May and 
Nicewander, 1994; de Gruijter, 1997). May and Nicewander (1994), who 
examine percentile-transformed data specifically, find that reliability ratios 
translate poorly only in cases where tests are especially easy or difficult, which 
is not the case in any sample states during the time period we study.  
10 The reliability ratios for each state test in each subject vary slightly from 

year-to-year. We use one reliability ratio for each state and subject, which we 
calculate using the average subject-specific ratio across all cohorts in a state. 

11 In fact, when we estimate the district-level IV models, we must drop small 
districts from the analysis. See Appendix B for details. 
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Appendix B in tandem with the IV results. 

2.2.2.2. Geographic mobility. Some students exit the public school sys-
tem and/or leave their home states before we observe their later-grade 
outcomes.12 Table 3 shows system exiters are negatively selected—i. 
e., the average entry percentiles of students with missing late-grade 
outcomes are almost always below those of students with observed 
outcomes.13 The sample attrition raises two concerns. The first is 
reference bias and applies to our analysis of test percentiles, which are 
normed against the population of test takers. The departure of nega-
tively selected students, if left unaddressed, would lead us to understate 
upward mobility even if there is no unobserved selection (note the 
reference bias issue is not relevant to our analysis of graduation out-
comes because these outcomes are not normed in the distribution). The 
second concern is the potential for unobserved selection into system exit 
conditional on the initial rank. This concern applies to both our test- 
based and graduation-based mobility metrics and may be problematic 
for subgroup analyses. For example, suppose system exiters are nega-
tively selected conditional on their initial ranks and district A has a 
higher proportion of exiters than district B. The differential attrition 
between districts will cause a compositional difference in their com-
parison and lead to an overstatement of outcome variance. 

We address the reference-bias concern by including students with 
missing outcomes in our analysis via imputation. Our imputation pro-
cedure uses all available test information prior to the missing outcome, 
up to the seventh grade, to impute test percentiles in eighth grade and 
high school, and both graduation outcomes.14 The imputed values allow 
us to preserve the full entry-cohort distributions in each state, mitigating 
the concern about reference bias. 

To address the concern about unobserved selection, we build hypo-
thetical selection scenarios into the imputation framework. The baseline 
selection scenario, which we maintain throughout our primary analysis, 
is that students with missing outcomes are negatively selected on un-
observables to the same degree as within-state, cross-district movers. We 
produce imputed values for students with missing outcomes that 
embody this condition by relying on observed outcomes for district 
movers within each state to estimate a “mobility selection parameter.” 
Using this scenario as an anchor, we consider the sensitivity of our 
findings to four scenarios where the degree of selection into exit is re- 
parameterized relative to baseline are as follows: (1) 25 percent more 
negative than baseline, (2) 10 percent more negative than baseline, (3) 
10 percent less negative than baseline, and (4) 25 percent less negative 
than baseline. With the selection-adjusted imputed values, we re- 
estimate our academic mobility models to determine the sensitivity of 
our findings to different assumptions about the direction and magnitude 
of unobserved selection into system exit, above-and-beyond selection 
into district mobility within the public school system of a state. Full 
details regarding our imputation procedure are in Appendix C. 

This sensitivity analysis shows that none of our findings are sub-
stantively affected by the different unobserved-selection conditions we 
test. This is the combined result of several aspects of outcome missing-
ness in our data: (1) even in the most extreme unobserved selection 
scenario, and noting that we already capture observed selection via early- 
grade performance, the degree of parameterized negative selection into 

exit is modest (based on within-state district movers), (2) although the 
likelihood of outcome missingness is not evenly distributed across stu-
dent subgroups or districts, the divergence across subgroups and dis-
tricts is not extreme, and (3) most students do not exit, limiting the scope 
for attrition to impact our findings. 

Finally, we turn to the issue of geographic mobility within states. We 
assign students to their third-grade districts, which means our estimates 
of cross-district variability take on an interpretation akin to “intent-to- 
treat” parameters. Although most students remain in the same district 
during grades 3–12, many change districts as well. Some of the changes 
are structural (e.g., a district that ends after the eighth-grade) or 
opportunistic (e.g., our data cover a period of growth in the charter 
sector in many states), although moves surely occur for many other 
reasons as well.15 Disentangling the reasons for student mobility across 
districts, and the implications, is a substantial undertaking and natural 
extension of this work, but here we focus on understanding differences 
in academic mobility across districts defined by the district attended in 
third grade. 

3. Findings 

For presentational convenience we focus the discussion of our find-
ings primarily on simple averages of the state-level results.16 However, 
we conduct our entire analysis separately for each state and present 
many of the state-by-state results alongside the state averages. State-by- 
state results that are suppressed in the main text are reported in 
Appendix A. 

3.1. Broad patterns of academic mobility at the state level 

Table 4 reports estimates of β and Ō25 from equation (1); recall that α 
is redundant in the statewide models. Panel A shows the cross-state 
averages of β and Ō25 using each of our three estimation methods 
(EIV, IV, and uncorrected). Panel B provides state-by-state results using 
our preferred EIV approach (Appendix Tables B2a and B2b show state- 
by-state results using the other methods). 

Consistent with prior evidence that early measures of achievement 
are highly predictive of later outcomes, a student’s rank in the test 
distribution in the third grade is a strong indicator of later-grade 
achievement. Using the EIV approach, the cross-state average esti-
mates of β in the eighth-grade and high-school test models are 0.84 and 
0.82, respectively (these averages reflect relatively homogeneous esti-
mates across the seven states, as shown in Panel B). As high as these 
estimates are, they likely understate β because of the incomplete 
correction for measurement error. The analogous IV estimates, which we 
interpret as bounding β from above, are 0.90 and 0.92 on average across 
states. Put plainly, where a student starts in the distribution when tested 
in the third grade is highly predictive of where they are in the distri-
bution in eighth grade and high school. 

Turning to the graduation models, the estimates of β are lower and 
more variable across states. The simple-average values of β for on-time 
and lagged graduation are 0.35 and 0.27, respectively, in the EIV 
models. The IV estimates are again larger, but still reflect a much weaker 
gradient between initial percentile ranks and the likelihood of gradu-
ating. The weaker gradient is visually apparent in the scatterlplots in 
Fig. 1 and Appendix Figure A1, and driven by the fact that graduation 
rates are high over most of the entry-rank distribution. Put another way, 
because high school graduation is a fairly indiscriminate outcome, early- 

12 For the test outcomes, we also lose students who do not take the tests. The 
tests are meant to be given to all students, minimizing sample attrition for this 
reason.  
13 There is one exception in Texas. Note that with an underlying continuous 

distribution of scores, the mean of each rank distribution should be exactly 50. 
The mean in several states deviates (very) slightly from 50 because of lumpiness 
in the underlying test-score distributions.  
14 We additionally make an ad hoc correction to the variance of the imputed 

values to avoid complications due to shrinkage. Appendix C describes our 
imputation procedure in detail. 

15 An important structural factor is the size of districts within a state, but even 
in a small-district state like Missouri, about two-thirds of students remain in the 
same district for grades 3–12.  
16 We prefer simple averages to weighted averages because Texas contributes 

so many students and districts compared to the other states. Weighted averages 
would largely reflect the findings from Texas. 
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career performance is a weaker predictor of success. 
Our estimates of Ō25 for the test outcomes are similar across states 

and tests, ranging from 28.2 to 33.2, with average values around 30 for 
each test. The IV analogs in Appendix B are lower—ranging from 27.2 to 
29.5. The upper and lower bound estimates of Ō25 thus form a fairly 

tight window. The graduation-based Ō25 values, which capture on-time 
and delayed graduation likelihoods for the average 25th percentile 
student, are 75.8 and 80.6, respectively, on average across the sample 
states, and again exhibit more state-to-state variability than their test- 
based analogs. Like with the test-based estimates, the IV estimates for 

Table 3 
Documentation of sample attrition in each state and for each late-grade outcome.    

Original Cohort Members   

Panel Entry Observed with Outcome Observed without Outcome   

N N Avg. 
Outcome Pctl. 
or Grad Rate 

N Avg. 
Entry 
Pctl. 

Avg. Imputed Outcome Pctl. or Grad Rate 

Grade 8 – Combined Math and ELA Georgia 376,427 308,624  49.58 67,803  41.21  41.55 
Massachusetts 139,337 124,606  49.41 14,731  46.51  47.99 
Michigan 453,946 395,263  49.41 58,683  39.44  41.83 
Missouri 262,366 227,459  50.69 34,907  47.68  46.63 
Oregon 123,833 105,674  50.44 18,159  45.70  44.07 
Texas 1,280,996 1,094,987  48.73 186,009  49.29  53.68 
Washington 218,051 185,501  49.98 32,550  45.24  45.26 

High School Exam Georgia 376,427 310,207  50.43 66,220  44.96  45.27 
Massachusetts 139,337 114,374  49.31 24,963  46.12  47.23 
Michigan 453,946 346,705  50.40 107,241  39.38  39.45 
Missouri 262,366 205,634  51.23 56,732  42.73  40.53 
Oregon Not Applicable 
Texas 1,280,996 1,095,603  50.57 185,393  41.11  44.19 
Washington 218,051 172,229  51.02 45,822  42.71  42.69 

Graduation (On-Time) Georgia 376,427 314,346  80.29 62,081  43.75  69.83 
Massachusetts 139,337 114,413  93.92 24,924  46.13  90.23 
Michigan 453,946 392,186  84.97 61,760  45.13  77.79 
Missouri 262,366 210,423  91.08 51,943  46.10  85.99 
Oregon 123,833 101,692  80.99 22,141  47.43  70.51 
Texas 1,280,996 1,129,684  84.27 151,312  41.59  76.79 
Washington 218,051 176,505  82.66 41,546  43.38  70.33 

Graduation (Within One Year of On Time) Georgia 376,427 314,346  83.76 62,081  43.75  76.21 
Massachusetts 139,337 114,413  94.18 24,924  46.13  90.61 
Michigan 453,946 392,186  87.86 61,760  45.13  81.72 
Missouri 262,366 210,423  93.59 51,943  46.10  89.81 
Oregon 123,833 101,692  82.62 22,141  47.43  72.39 
Texas 1,280,996 1,129,684  87.73 151,312  41.59  82.82 
Washington 218,051 176,505  86.66 41,546  43.38  76.29 

Notes: Sample sizes and entry percentiles are based on the average of the grade 3 math and ELA percentiles (i.e., percentiles at entry). For the test outcomes, the mean 
of each rank distribution should be 50, but in several states it deviates (very) slightly because of lumpiness in the underlying test-score distributions. For graduation 
outcomes, we report the percent of students who graduate among stayers because percentiles are not informative. 

Table 4 
Statewide estimates of β and Ō25 for each outcome.  

Panel A. Average statewide estimates of β and Ō25 across the seven states, using different measurement error approaches.  

Grade-8 Test HS Test Grad Grad + 1  

β O25 β O25 β O25 β O25 

Cross-State Averages        
EIV  0.84  29.66  0.82  30.44  0.35  75.76  0.27  80.59 
IV  0.90  28.28  0.92  28.54  0.41  74.46  0.31  79.58 
Uncorrected  0.79  30.99  0.79  31.69  0.33  76.16  0.25  80.88  

Panel B. Individual statewide estimates of β and Ō25 using our preferred measurement error correction (EIV).  
Grade-8 Test HS Test Grad Grad +1  

β O25 β O25 β O25 β O25 

All (Avg)  0.84  29.66 0.82  30.44  0.35  75.76  0.27  80.59 
GA  0.86  29.92 0.86  29.78  0.52  66.03  0.39  73.12 
MA  0.84  29.56 0.83  29.65  0.19  88.73  0.19  89.23 
MI  0.84  28.48 0.80  29.82  0.35  76.02  0.30  80.22 
MO  0.87  28.18 0.82  29.97  0.25  83.61  0.17  88.58 
OR  0.81  29.86 Not Applicable  0.33  71.03  0.29  73.63 
TX  0.85  31.69 0.80  33.16  0.43  73.77  0.26  81.39 
WA  0.82  29.94 0.83  29.68  0.39  71.15  0.29  77.94 

Notes: EIV = Errors in Variables Regression, IV = Instrumental Variables Regression, Uncorrected = Uncorrected Linear Regression. The top row of Panel B repeats the 
average values reported in Panel A using EIV. In these statewide regressions corresponding to equation (1), α and β are not separately identified. O25 is equal to α +
25*β. Oregon does not offer a high school test taken in a (near) universal grade, so Oregon is omitted from the HS test results. All β coefficients are statistically 
significant; standard errors and statistical significance information suppressed for brevity. 
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graduation-based Ō25 in Appendix B are similar to the EIV estimates but 
slightly smaller. 

The similarity across states in the test-based mobility parameters is 
partly the result of the distributions of test ranks being forced into 
alignment by the percentiles conversion. This does not happen with 
graduation outcomes. Thus, one source of differences in the graduation 
models are differences in statewide graduation rates. Unsurprisingly, 
states with higher graduation rates have higher graduation-based Ō25 
values. This highlights a source of ambiguity in interpreting our findings 
with respect to graduation. One interpretation of a high Ō25 value is that 
it reflects a state’s success in pushing initially low-performing students 
to graduate. But an alternative interpretation is that it reflects low 
graduation standards (Costrell, 1994). Unfortunately, our data are ill- 
suited to distinguish between these interpretations, though when we 
get to the district-level analysis below, we show districts’ test-based and 
graduation-based mobility metrics are positively correlated (ρ ≈

0.3–0.4). This provides some support for the more optimistic interpre-
tation of graduation-based mobility, at least measured at the district 
level. 

3.2. Academic mobility for student subgroups within states 

In Tables 5, 6, and 7 we report results from versions of Equation (2) 
where we define student subgroups (s) by third-grade racial/ethnic 
designation, FRL designation, and school urbanicity (urban, suburban, 
rural). The entry and outcome percentile ranks continue to be normed 
against the full state distributions. This allows for separate identification 
of αs and βs, with the tradeoff that we may overstate the academic 
mobility of higher performing subgroups relative to lower performing 
subgroups in the presence of uncorrected measurement error (Hanushek 
and Rivkin, 2009). Consequently, we place greater emphasis on the IV 
estimates in this section because of the more comprehensive treatment 
of measurement error; any failures of the exclusion restriction will tend 
to inflate the estimates of β, but we are focusing on the differences be-
tween subgroups. 

Table 5 and Fig. 2 show results by race/ethnicity. We compare 
mobility for Asian, Black, Hispanic, and White students.17 Focusing on 
Ō25s— marked by a vertical line at the 25th percentile of the entry dis-
tribution in each graph in Fig. 2—we find that initially low-performing 
Asian students have much higher upward mobility than all other racial- 
ethnic groups: the average Ō25s value for the eighth grade test is 39.0 for 
Asians, 27.1 for Blacks, 29.8 for Hispanics, and 30.7 for Whites. The 
other panels in Table 5 reveal a similar pattern for the other outcomes. 
Fig. 2 shows an Asian student advantage in outcomes throughout the 
distribution of initial ranks via higher baseline mobility (i.e., Asian 
students have a high value of αs). For test scores this translates to an 
outcome-rank advantage throughout the entry-rank distribution; for 
graduation, outcomes converge at higher entry percentiles for all racial- 
ethnic groups because the graduation likelihood approaches 1.0 for 
students with high entry percentiles. 

Using the IV measurement error correction, the racial-ethnic gaps are 
smaller but substantively similar (Appendix Table B3a). For example, 
the average values of Ō25s for the eighth grade test are 37.5 for Asians, 
26.2 for Blacks, 29.1 for Hispanics, and 28.9 for Whites. The gap be-
tween Asian and other students remains large despite the more 
comprehensive measurement-error correction, indicating much higher 
upward mobility for Asian students. 

The results in Table 5 (and Appendix B3a) exemplify the outsized 
influence of baseline mobility (α) in driving variation in absolute up-
ward mobility (Ō25) across racial-ethnic groups. The differences in 
relative mobility (β) are modest in comparison. For instance, consider 

the gap between the group with the highest absolute upward mobi-
lity—Asian students—and the group with the lowest upward mobi-
lity—Black students—on the eighth-grade test. Based on either the EIV 
or IV results, 90-plus percent of the Asian-Black Ō25 gap is accounted for 
by the gap in α between Asian and Black students, with only a small 
fraction of the gap remaining to be explained the gap in β (which is 
multiplied by a factor of 25 to map to Ō25). The value of α is mechani-
cally overstated relative to β by focusing at a point in the distribution 
below the 50th percentile; still, even evaluated at Ō50, α is the dominant 
explanatory factor. The primary influence of baseline mobility is a 
recurring theme throughout our investigation of the variance in absolute 
upward mobility across student subgroups and school districts. 

Our finding of negative Black-White mobility gaps aligns with evi-
dence on the widening of Black-White outcome gaps during K-12 edu-
cation documented previously (Clotfelter, Ladd, & Vigdor, 2009; 
McDonough, 2015; Todd & Wolpin, 2007). Our mixed findings for 
Hispanic-White differences (across outcomes and the EIV and IV models) 
contribute to a mixed literature. For example, Clotfelter, Ladd, and 
Vigdor (2009) find the Hispanic-White achievement gap narrows during 
grades 3–8 in North Carolina. Alternatively, Reardon and Galindo 
(2009) find the gap is flat from grades 1–5 using a nationally repre-
sentative sample, and Todd and Wolpin (2007) find it remains flat or 
widens modestly.18 

Next, Table 6 and Appendix Table B4a follow the structure of Table 5 
but divide students by FRL status. Compared to FRL students, non-FRL 
students have greater absolute upward mobility. For test scores in 
eighth grade and high school, the average Ō25 gaps in by FRL status in 
Table 6 are 4.5 and 6.7 percentage points, respectively. The average on- 
time and lagged graduation gaps are 12.5 and 11.0 percentage points. 
Again, the more comprehensive treatment of measurement error via IV 
reduces the magnitudes of these gaps to some degree, but they remain 
substantial (see Appendix Table B4a). 

The last subgroup comparison is by school urbanicity in the third 
grade, shown in Table 7. Here there is less heterogeneity across groups. 
The most notable differences in Table 7 are for graduation outcomes: 
graduation rates for initially low-performing students who attend urban 
schools are significantly lower than graduate rates for their peers who 
attend suburban and rural schools (who have similar graduation rates to 
each other). These results are again replicated substantively in the IV 
models in Appendix Table B5a. 

3.3. District-Level variation in mobility and Cross-Outcome, Cross-Cohort 
correlations 

In this section we estimate the within-state, cross-district standard 
deviations of α, β, and Ō25 to explore the extent to which baseline, 
relative, and absolute upward mobility vary across school districts. For 
charter schools, we follow the coding conventions of the states to assign 
district status. In most cases, charter schools (or their networks in in-
stances of multi-site charters) are coded as separate districts, although a 
small number of charters are intergated into larger districts, in which 
case they are coded as part of the larger district. Note, however, that 
charter enrollment shares in our cohorts are small; across states they 
range from 0 to 7.7 percent, with a median value of 1.8 percent (see 
Appendix Table A1).19 

The raw variances of α̂d, β̂d, and ̂̄O25d will overstate the true vari-

17 There is also an “other race/ethnicity” category in the data to capture all 
other students, but it is a small group and omitted from our focal comparisons. 

18 A more nuanced explanation of Reardon and Galindo’s (2009) findings is 
that their estimates imply a modest shrinking of the gap in math and a modest 
increase in reading.  
19 Charter enrollment in the U.S. more than doubled during the timespan over 

which we track our focal third-grade cohorts (National Center for Education 
Statistics, 2022), so charter enrollment would be expected to account for a 
larger share of total enrollment in more recent cohorts. 
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ances due to sampling variance. We estimate the sampling variance of 
each parameter by the average of the squared standard errors (Aar-
onson, Barrow, and Sander, 2007), which we subtact from the total 
variance to estimate the true variance.20 Error-corrected standard de-
viations of the mobility parameters are shown in Tables 8 and B6a for 
the EIV and IV estimates, respectively. The variances across districts for 
all parameters, all outcomes, and in all states are statistically signficant. 
Fig. 3 shows the distributions of Ō25d in two example states, Missouri 
and Washington, for all outcomes. The distributions are consistently 
unimodal and smooth, ruling out odd patterns of heterogeneity across 
districts. 

On average across states, the EIV results in Table 8 indicate that one 
standard deviation in the distribution of absolute upward mobility (Ō25) 
corresponds to a change in student rank on the eighth-grade and high- 
school tests of about 4.8 percentile points. For on-time and delayed 
graduation, the analogous average standard deviations are 5.5 and 4.9 

percentage points, respectively. The standard deviations of the IV-based 
estimates are similar. Adding context from Table 4, the estimates in 
Table 8 indicate that a third-grade entrant at the 25th percentile who 
attends a district with academic mobility one-standard-deviation above 
average would be expected to score at the 35.2 percentile in the state 
distribution of the high school test, compared to the 30.4 percentile at 
the average district. In terms of on-time graduation, a similar compari-
son yields a graduation likelihood at the high-mobility district of 81.3 
percent, versus 75.8 percent at the average district. 

It is also of interest to compare the importance of αd and βd in driving 
upward mobility. Although separable inference is challenging because 
αd and βd are negatively correlated within districts, on average; there is 
ample variation in the data to separately identify the magnitude of 
variation in both parameters across districts. The comparison is 
complicated because the importance of αd and βd varies by the initial 
rank—i.e., at low initial ranks, variation in αd will be a more important 
driver of upward mobility but as the initial rank increases, βd becomes 
more important. This dynamic is illustrated in Appendix Figure A2. The 
key takeaway from the figure is that over most of the distribution of 
initial ranks, and certainly at lower-valued ranks, variation in α is the 

Table 5 
Statewide academic mobility estimates by race/ethnicity.   

Grade-8 Test HS Test Grad Grad + 1 
Student Group: Asian  

α β O25 α β O25 α β O25 α β O25 

All (Avg)  18.43  0.82  39.00 19.76  0.81  39.91  79.58  0.19  84.93  84.44  0.16  88.36 
GA  19.93  0.80  40.02 16.90  0.82  37.45  66.63  0 0.36  75.74  74.53  0.27  81.33 
MA  18.99  0.82  39.50 20.85  0.80  40.81  91.43  0.10  93.84  92.09  0.09  94.3 
MI  16.59  0.85  37.75 14.48  0.89  36.73  83.20  0.18  87.64  87.09  0.14  90.53 
MO  15.61  0.87  37.40 18.81  0.81  39.03  86.42  0.14  90.05  90.65  0.10  93.07 
OR  14.09  0.84  34.99 Not Applicable  75.88  0.23  81.68  78.51  0.20  83.52 
TX  28.08  0.77  47.24 32.82  0.71  50.52  81.68  0.18  86.26  89.17  0.08  91.21 
WA  15.75  0.81  36.07 14.68  0.81  34.93  71.82  0.3  79.32  79.06  0.22  84.59  

Student Group: Black  

α β O25 α β O25 α β O25 α β O25 

All (Avg)  7.81  0.77  27.06 8.45  0.76  27.36  62.94  0.39  72.73  71.10  0.29  78.32 
GA  8.12  0.79  28.09 7.56  0.81  27.69  51.83  0.57  65.95  63.26  0.41  73.55 
MA  9.82  0.75  28.49 10.33  0.71  28.18  80.70  0.21  85.89  81.92  0.19  86.70 
MI  8.15  0.71  25.88 5.09  0.71  22.73  62.60  0.39  72.35  68.35  0.34  76.86 
MO  5.62  0.78  25.09 8.12  0.75  26.82  70.11  0.32  78.18  79.01  0.21  84.29 
OR  5.40  0.76  24.49 Not Applicable  57.60  0.32  65.65  63.53  0.26  70.14 
TX  10.25  0.80  30.21 12.53  0.75  31.32  61.20  0.51  73.94  74.91  0.29  82.17 
WA  7.29  0.79  27.15 7.05  0.81  27.41  56.51  0.42  67.13  66.74  0.31  74.53  

Student Group: Hispanic  

α β O25 α β O25 α β O25 α β O25 

All (Avg)  10.25  0.78  29.76 9.91  0.77  29.25  65.85  0.36  74.86  73.17  0.27  79.90 
GA  11.28  0.82  31.67 9.75  0.82  30.42  51.57  0.53  64.71  62.62  0.38  72.24 
MA  9.10  0.74  27.59 8.96  0.71  26.77  76.16  0.27  82.98  77.19  0.26  83.69 
MI  8.83  0.80  28.75 6.35  0.82  26.96  66.66  0.32  74.69  72.04  0.28  78.94 
MO  9.30  0.82  29.85 12.21  0.77  31.37  76.09  0.25  82.42  83.49  0.16  87.57 
OR  11.58  0.73  29.77 Not Applicable  67.25  0.27  74.00  70.50  0.24  76.43 
TX  11.47  0.78  31.04 13.41  0.73  31.70  61.13  0.50  73.64  74.39  0.30  81.80 
WA  10.16  0.78  29.62 8.79  0.78  28.30  62.07  0.38  71.61  71.93  0.27  78.66  

Student Group: White  

α β O25 α β O25 α β O25 α β O25 

All (Avg)  9.93  0.83  30.69 11.24  0.82  31.66  68.79  0.32  76.82  74.79  0.25  81.08 
GA  10.29  0.85  31.53 11.34  0.84  32.42  53.52  0.50  66.06  62.40  0.39  72.25 
MA  9.06  0.84  29.95 10.09  0.81  30.38  88.40  0.13  91.72  88.86  0.13  92.04 
MI  9.16  0.82  29.69 7.89  0.85  29.10  70.58  0.31  78.30  75.86  0.26  82.34 
MO  7.75  0.86  29.24 10.80  0.81  30.94  81.14  0.20  86.21  87.41  0.13  90.63 
OR  10.18  0.80  30.24 Not Applicable  61.48  0.35  70.21  64.91  0.31  72.72 
TX  13.03  0.84  33.97 17.23  0.78  36.69  64.22  0.38  73.60  72.73  0.26  79.26 
WA  10.02  0.81  30.20 10.08  0.81  30.45  62.16  0.38  71.61  71.35  0.28  78.31 

Notes: These estimates are from mobility regressions estimated separately for each racial-ethnic student group in each state, as shown in equation (2). O25 is equal to α 
+ 25*β. Oregon does not offer a high school test taken in a (near) universal grade, so Oregon is omitted from the HS test results. All β coefficients are statistically 
significant; standard errors and statistical significance information suppressed for brevity. 

20 The standard errors of ̂̄O25d are linear combinations of the standard errors of 
α̂d and β̂d. 
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primary driver of variation in upward academic mobility. This only 
changes at very high levels of the initial outcome percentile—the 
crossover point is at approximately the 83rd percentile, where 

σβ*p ≈ σα. 
This result is another example of the consistent theme of our analysis 

that there is more variation in academic-mobility intercepts than slopes, 

Table 6 
Statewide academic mobility estimates by FRL status.   

Grade-8 Test HS Test Grad Grad + 1 
Student Group: FRL  

α β O25 α β O25 α β O25 α β O25 

All (Avg)  9.03  0.76  28.11 8.61  0.75  27.47  62.32  0.35  71.15  69.94  0.26  76.48 
GA  8.78  0.79  28.61 7.96  0.79  27.86  48.99  0.53  62.45  60.24  0.39  70.02 
MA  8.92  0.73  27.09 9.04  0.69  26.40  77.13  0.23  82.8  78.11  0.22  83.49 
MI  8.31  0.75  26.98 5.55  0.78  24.99  60.89  0.34  69.37  66.69  0.30  74.17 
MO  6.47  0.81  26.79 8.46  0.76  27.52  73.00  0.26  79.62  81.12  0.17  85.37 
OR  10.54  0.72  28.56 Not Applicable  60.12  0.25  66.30  63.83  0.21  69.09 
TX  11.06  0.77  30.34 12.74  0.72  30.65  59.14  0.50  71.55  72.63  0.29  79.81 
WA  9.13  0.77  28.42 7.89  0.78  27.37  56.96  0.36  65.99  66.97  0.26  73.44  

Student Group: non-FRL  

α β O25 α β O25 α β O25 α β O25 

All (Avg)  12.06  0.82  32.59 14.28  0.80  34.18  77.99  0.23  83.64  83.39  0.16  87.45 
GA  13.28  0.82  33.96 15.22  0.81  35.47  67.46  0.35  76.27  75.61  0.25  81.95 
MA  11.39  0.82  31.90 12.89  0.79  32.71  92.94  0.08  94.87  93.35  0.07  95.16 
MI  10.28  0.82  30.86 8.88  0.85  30.15  79.91  0.21  85.14  84.36  0.17  88.53 
MO  9.29  0.86  30.71 14.50  0.78  34.02  86.76  0.15  90.43  91.91  0.08  94.04 
OR  12.48  0.80  32.50 Not Applicable  73.42  0.24  79.47  76.50  0.21  81.72 
TX  15.10  0.83  35.80 20.48  0.76  39.41  73.39  0.28  80.40  81.97  0.16  86.06 
WA  12.59  0.79  32.41 13.68  0.79  33.34  72.08  0.27  78.93  80.00  0.19  84.70 

Notes: These estimates are from mobility regressions estimated separately for each FRL student group in each state, as shown in equation (2). O25 is equal to α + 25*β. 
Oregon does not offer a high school test taken in a (near) universal grade, so Oregon is omitted from the HS test results. All β coefficients are statistically significant; 
standard errors and statistical significance information suppressed for brevity. 

Table 7 
Statewide academic mobility estimates by the urbanicity of the school district in the third grade.   

Grade-8 Test HS Test Grad Grad + 1 
Student Group: Urban  

α β O25 α β O25 α β O25 α β O25 

All (Avg)  7.97  0.83  28.73 7.65  0.82  28.22  62.14  0.40  72.24  69.76  0.31  77.53 
GA  5.84  0.81  26.34 6.29  0.83  26.97  47.00  0.56  61.20  57.59  0.44  68.50 
MA  8.40  0.81  28.53 8.37  0.78  27.97  77.07  0.26  83.62  78.19  0.25  84.38 
MI  7.02  0.84  27.99 2.69  0.89  24.91  62.62  0.41  72.90  68.40  0.36  77.31 
MO  4.83  0.85  26.17 7.38  0.81  27.54  68.86  0.33  77.11  77.49  0.23  83.17 
OR  10.06  0.82  30.66 Not Applicable  61.45  0.34  70.00  65.68  0.30  73.08 
TX  10.26  0.84  31.29 12.66  0.80  32.62  60.36  0.48  72.31  73.58  0.28  80.67 
WA  9.38  0.83  30.12 7.90  0.85  29.15  57.60  0.44  68.51  67.40  0.33  75.61  

Student Group: Suburban  

α β O25 α β O25 α β O25 α β O25 

All (Avg)  9.11  0.85  30.32 10.30  0.84  31.18  68.75  0.34  77.17  75.49  0.25  81.87 
GA  9.10  0.87  30.91 9.39  0.87  31.24  52.35  0.53  65.72  62.36  0.41  72.64 
MA  8.91  0.85  30.07 9.76  0.83  30.38  86.81  0.16  90.75  87.36  0.15  91.13 
MI  8.21  0.83  29.04 6.69  0.86  28.25  70.82  0.32  78.82  76.29  0.26  82.91 
MO  6.29  0.89  28.56 11.55  0.82  32.12  78.43  0.24  84.42  85.35  0.16  89.27 
OR  10.08  0.82  30.65 Not Applicable  63.78  0.34  72.34  67.26  0.30  74.85 
TX  11.41  0.85  32.68 14.47  0.80  34.48  66.23  0.39  75.96  77.77  0.22  83.38 
WA  9.76  0.82  30.31 9.94  0.83  30.58  62.81  0.38  72.21  72.05  0.28  78.93  

Student Group: Rural  

α β O25 α β O25 α β O25 α β O25 

All (Avg)  9.22  0.82  29.77 9.55  0.82  29.99  69.52  0.31  77.43  75.94  0.24  81.90 
GA  9.04  0.84  30.23 8.28  0.85  29.64  55.57  0.49  67.84  65.98  0.35  74.89 
MA  9.13  0.83  29.78 9.89  0.81  30.15  88.37  0.13  91.60  88.89  0.12  91.96 
MI  9.53  0.80  29.46 7.42  0.83  28.28  70.30  0.31  78.07  75.38  0.27  82.03 
MO  7.68  0.85  28.99 10.01  0.80  30.00  81.42  0.20  86.50  87.83  0.13  90.98 
OR  9.72  0.78  29.10 Not Applicable  63.46  0.31  71.26  66.54  0.28  73.54 
TX  10.23  0.85  31.48 13.15  0.79  32.88  64.26  0.40  74.33  74.59  0.25  80.90 
WA  9.21  0.81  29.36 8.53  0.82  29.00  63.28  0.36  72.39  72.40  0.26  78.97 

Notes: These estimates are from mobility regressions estimated separately for each urbanicity student group in each state, as shown in equation (2). O25 is equal to α +
25*β. Oregon does not offer a high school test taken in a (near) universal grade, so Oregon is omitted from the HS test results. All β coefficients are statistically 
significant; standard errors and statistical significance information suppressed for brevity. 
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in this case across districts. This suggests the potential is greater for 
districts to improve the outcomes of initially low-performing students 
through overall improvement rather than by differentially impacting 
students at different points in the entry distribution. We are mindful in 
this interpretation that our estimates are not causal, but the ratio of the 

variances of αd and βd is suggestive of how districts are likely to affect 
the trajectories of low performers absent reforms to current practice. 

Finally, Tables 9 and 10 show correlations between district estimates 
of absolute upward mobility across outcomes and cohorts. We adjust for 
estimation error in the correlation between any two sets of estimates by 

Fig. 2. Illustrations of the linearly estimated rank-rank relationships for 8th-grade test score and on-time graduation outcomes by race-ethnicity, corresponding to 
the results in Table 5. On average across states. Notes: These graphs illustrate the cross-state averages of the linearly-estimated mobility relationships by race- 
ethnicity between the 3rd grade test rank and (a) the 8th-grade test rank and (b) on-time high school graduation. The linear-model parameters for each race- 
ethnicity (and state) and outcome are shown in Table 5. 
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first estimating the ratio of the true variance to the total variance for 
each set of estimates. Then we multiply the raw correlation by the in-
verse of the square root of the product of the ratios, following Spearman 
(1904). As noted by Kraft (2017), this procedure generates what are best 
interpreted as upper-bound correlations because it assumes all estima-
tion error is uncorrelated. We also show unadjusted correlations that 
provide complementary lower bounds. For ease or presentation, we 
focus on the adjusted correlations in our discussion, and for brevity we 
show the average values of the correlations across states in the tables. 
The state-by-state results are reported in Appendix Tables A2 and A3. 

Table 9 shows that the mobility metrics are positively correlated 
across outcomes within districts, on average. The error-adjusted, upper- 
bound correlations within outcome mode are very high—for test out-
comes the average correlation across states is 0.87, and for graduation 
outcomes it is 1.0. The adjusted correlations across outcome modes are 
positive but lower, ranging from 0.37 to 0.40. 

Table 10 shows analogous correlations within districts and out-
comes, but across cohorts. The states that contribute to the average in 
each cell depend on the cohorts included in the state samples (per 
Table 1). The contiguous-cohort adjusted correlations are between 0.59 
and 0.73 on average, and somewhat larger for test-based mobility than 
graduation-based mobility. The adjusted correlations for cohorts two- 
and three-years removed are mostly smaller but still consistently posi-
tive, and no adjusted correlation across any cohorts for any outcome is 
below 0.42. 

4. Correlates of academic mobility 

4.1. Primary correlates 

Next we explore links between academic mobility and the attributes 
of districts and their local areas. We assemble a database of district and 
local-area attributes from two sources: (1) our administrative education 
databases and (2) externally geocoded data from the National Center for 
Education Statistics (NCES). Using the administrative data, we construct 
variables for the percentages of students in each district who are (a) 
Black, (b) Hispanic, (c) FRL enrolled, (d) participants in an individual-
ized education plan (IEP), and (e) geographically mobile. Following 
CHKS, we also construct a Theil index that captures within-district 
segregation by race-ethnicty (measured by the segregation of under-
represented minority students, who we define as Black and Hispanic), 

and a parallel segregation index based on economic status (measured by 
FRL enrollment) motivated by recent research on economic connected-
ness (Chetty et al., 2022).21 All these variables are constructed using 
data from students in our cohorts in the third grade. 

An additional district attribute we construct using our administrative 
data is value added to student test scores in math and ELA in grades 4–8. 
Our value-added estimates capture district contributions to student test 
score growth in both subjects. We estimate value added using data from 
the same time periods during which we follow the cohorts in each state 
but jackknife the estimates around our cohorts to remove any mechan-
ical correlation between academic mobility and value added. We 
construct the value-added estimates to be uncorrelated with student 
characteristics following Parsons, Koedel, and Tan (2019). Finally, we 
estimate value-added separately for above- and below-median students 
based on lagged test scores. Appendix D provides estimation details for 
the value-added models. 

We also correlate academic mobility with local-area attributes geo-
coded to districts’ catchment areas based on data from the American 
Community Survey (ACS), made available by the Education De-
mographic and Geographic Estimates (EDGE) program of NCES. We 
include variables that capture local-area median household income and 
the poverty rate, along with the percent of families with school-aged 
children where the head of household is identified as (a) Black, (b) 
Hispanic, (c) a high school graduate, (d) a college graduate, (e) speaking 
a language other than English at home, (f) residentially stable, and (g) 
never married. These variables are from the population of parents of 
school-aged children in districts’ catchment areas. Finally, we correlate 
academic mobility with district per-pupil expenditures taken from the 
District Finance Survey, also from the NCES.22 

Fig. 4 shows coefficients from univariate regressions of 
Ō25d—estimated for each of the four long-term outcomes—on the dis-
trict and local-area attributes. We report average coefficients across the 
seven states for presentational convenience. The independent variables 
are standardized within each state to have a mean of zero and variance 

Table 8 
Estimates of the of the within-state, cross-district standard deviations of Ō25d, αd, and βd.   

Grade-8 Test HS Test Grad Grad + 1 
Standard Deviations  

α β O25 α β O25 α β O25 α β O25 

All (Avg)  4.89  0.06  4.79 5.02  0.06  4.84  7.31  0.09  5.51  6.34  0.07  4.86 
GA  3.65  0.04  3.54 3.83  0.05  3.72  7.70  0.10  5.59  6.88  0.07  5.14 
MA  6.32  0.05  5.91 6.38  0.05  5.96  5.61  0.07  4.00  5.39  0.07  3.84 
MI  4.07  0.06  4.06 5.10  0.07  4.98  7.79  0.08  6.38  7.15  0.07  5.69 
MO  4.11  0.06  4.33 4.33  0.06  4.28  5.70  0.06  4.18  4.26  0.04  3.20 
OR  7.21  0.07  6.62 Not Applicable  9.37  0.10  7.19  9.01  0.10  6.94 
TX  5.56  0.06  5.14 5.82  0.06  5.47  7.34  0.12  5.03  5.62  0.08  4.26 
WA  3.28  0.06  3.93 4.67  0.06  4.60  7.69  0.09  6.19  6.05  0.08  4.92 

Notes: These standard deviations are for the parameters estimated from equation (3) for each district in each state, adjusted for estimation error variance using the 
average of the squared standard errors of the mobility parameters. Oregon does not offer a high school test taken in a (near) universal grade, so Oregon is omitted from 
the HS test results. 

21 The Theil indices measure the degree of racial/ethnic or economic segre-
gation in a district. Values range from 0 (where all schools within a district have 
the same racial/ethnic or economic composition as the district as a whole) to 1 
(where racial/ethnic or economic groups are entirely segregated between 
schools within a district). We drop districts with only one school because the 
Theil index is undefined.  
22 We use NCES data from the 2010–14 period to construct these variables. 

The EDGE data are only available over selected periods. Among the available 
options, the 2010–14 period provides the most overlap with the years over 
which we estimate academic mobility for the sample cohorts. 
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of one—therefore, the coefficient averages reflect the predicted change 
in academic mobility associated with a one-standard-deviation move in 
the distribution of the independent variable, on average across states.23 

Detailed state-by-state regression output underlying Fig. 4 is available in 

Appendix Table A4. Results using IV-based estimates of Ō25d as depen-
dent variables in place of the EIV-based estimates are broadly similar 
and reported in Appendix Table B9a.24 

The preceding analysis offers some predictions about our findings. 

Fig. 3. Distributions of estimated Ō25d in two states, Missouri and Washington, for all outcomes. These distributions are visual complements to the results in Table 8. 
Notes: Distributions of estimated O25 values. The distributions are reported as estimated directly without any adjustments for sampling variance. Each graph reports 
the total variance and signal variance, where the latter is the total variance minus the sampling variance, to indicate the portion of the variation driven by sam-
pling error. 

23 The value-added measures are shrunken using the approach of Lefgren and 
Sims (2012), per Appendix D. This means a one-standard-deviation change in 
the raw data corresponds to more than a one-standard-deviation change in the 
true (unobserved) distribution of value added (Chetty, Friedman, and Rockoff, 
2014a). 

24 We note two caveats to the similarity: (1) the district-level IV regressions 
are especially noisy in some cases due to the reduced efficiency of the IV 
models, and (2) it is only feasible to estimate the district-level mobility re-
gressions using IV for a subsample of larger districts. See the discussion in 
Appendix B for more information. 
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For example, the student-level differences in academic mobility by race/ 
ethnicity and FRL status in Tables 5 and 6 are reflected in the district- 
level relationships in Fig. 4. More broadly, Fig. 4 shows absolute up-
ward mobility is higher in socioeconomically advantaged areas. Some of 
the strongest predictors of high absolute upward mobility are: lower 
shares of underrepresented minorities in districts and their local areas, 
higher local-area incomes and education levels, less school mobility and 
greater residential stability, fewer never-married parents, and value- 
added to student achievement. The value-added associations are some-
what stronger in the regressions of test-based academic mobility, which 

is not surprising, but are also positive for the graduation-based mobility 
metrics.25 

Among the more interesting correlates for which we do not identify a 
positive relationship with academic mobility is district per-pupil 
spending. In fact, in most states and for most outcomes, higher per- 
pupil spending is associated with lower academic mobility (see 
Appendix Table A4). The relationships in Fig. 4 are not causal and there 
are many potential explanations. In this instance, possibilities include 
redistributive spending that targets disadvantaged children such as Title 
I, compensating differentials for educators to account for more 

Table 9 
Adjusted and unadjusted correlations of Ō25d across outcomes, on average across states.  

Adjusted Correlations Unadjusted Correlations  

Grade-8 test HS test Grad Grad + 1  Grade-8 test HS test Grad Grad + 1 

Grade-8 test  1.00    Grade-8 test  1.00    
HS test  0.87  1.00   HS test  0.76  1.00   
Grad  0.38  0.40  1.00  Grad  0.31  0.31  1.00  
Grad + 1  0.38  0.37  1.00  1.00 Grad + 1  0.30  0.29  0.92  1.00 

Notes: Correlation matrix entries are simple, cross-state averages of the correlations of the district-level mobility parameters across outcomes. State-by-state correlation 
matrices are reported in Appendix Table A2. The adjusted correlations are best interpreted as upper bounds because they assume estimation error in Ō25d is uncor-
related across outcomes despite the fact that the same student sample is used; the unadjusted correlations make no adjustments for estimation error. Oregon does not 
offer a high school test taken in a (near) universal grade, so Oregon is omitted from the HS test results.  

Table 10 
Adjusted and unadjusted correlations of Ō25d across cohorts for each outcome, on average across states. Grade-8 Test.  

Adjusted Correlations Unadjusted Correlations  
2006 2007 2008 2009  2006 2007 2008 2009 

2006 1    2006  1.00    
2007 0.67 1   2007  0.57  1.00   
2008 0.59 0.69 1  2008  0.49  0.60  1.00  
2009 0.49 0.63 0.73 1 2009  0.40  0.53  0.61  1.00  

HS Test  
Adjusted Correlations Unadjusted Correlations  

2006 2007 2008 2009  2006 2007 2008 2009 

2006 1    2006  1.00    
2007 0.70 1   2007  0.52  1.00   
2008 0.67 0.70 1  2008  0.50  0.58  1.00  
2009 0.61 0.63 0.72 1 2009  0.45  0.50  0.58  1.00  

Graduation  
Adjusted Correlations Unadjusted Correlations  

2006 2007 2008 2009  2006 2007 2008 2009 

2006  1.00    2006  1.00    
2007  0.59  1.00   2007  0.44  1.00   
2008  0.48  0.59  1.00  2008  0.37  0.44  1.00  
2009  0.56  0.62  0.68  1.00 2009  0.44  0.48  0.50  1.00  

Graduation +1  
Adjusted Correlations Unadjusted Correlations  

2006 2007 2008 2009  2006 2007 2008 2009 

2006  1.00    2006  1.00    
2007  0.59  1.00   2007  0.43  1.00   
2008  0.42  0.61  1.00  2008  0.31  0.44  1.00  
2009  0.56  0.64  0.66  1.00 2009  0.43  0.48  0.48  1.00 

Notes: Correlation matrix entries are simple, cross-state averages of the correlations of the district-level mobility parameters within outcomes and across cohorts. State- 
by-state correlation matrices are reported in Appendix Table A3. The adjusted correlations are best interpreted as upper bounds because they assume estimation error 
in the estimates of Ō25d is uncorrelated across cohorts; the unadjusted correlations make no adjustments for estimation error. Not all states contribute to the averages in 
all cells in this table—which states contribute depends on the year-cohorts available in each state (see Table 1). Oregon does not offer a high school test taken in a (near) 
universal grade, so Oregon is omitted from the HS test results.  

25 The average coefficients on value added in the graduation-based Ō25 models 
are buoyed by particularly large estimates in Michigan. Still, the coefficients in 
all states are positive and many are statistically significant. See Appendix B. 
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challenging working conditions, and inefficient resource use. 

4.2. Extensions 

We conduct three extensions of the analysis of correlates. First, we 
replicate the correlational analysis but use as dependent variables 
student-type-specific estimates of absolute upward mobility, estimated 
separately in each district for students who are Black, Hispanic, and FRL- 
enrolled. This is to assess whether the predictors of higher academic 
mobility overall also predict higher academic mobility among students 
in these at-risk groups. A limitation is that the subgroup specific esti-
mates of academic mobility are less precisely estimated—sometimes by 
a considerable margin depending on the composition of a district. This 
should not cause bias because Ō25d is the dependent variable, but it does 
reduce efficiency and lower the precision with which we can identify 
some relationships. Noting this limitation, we generally find the attri-
butes that predict higher academic mobility overall also predict higher 
mobility for at-risk students. Figures analogous to Fig. 4 for each student 

type are in Appendix Figures A3-A5. 
Second, we correlate district value-added separately with αd and βd, 

instead of Ō25d, to assess whether districts with high value added pro-
mote greater convergence in student outcomes. Table 11 shows these 
results. We do not find consistent evidence of a relationship between 
district value-added and βd (the association is small and inconsistently 
signed across states and outcomes). In contrast, the associations between 
district value-added and αd are overwhelmingly positive. This suggests 
the correlations between value added and Ō25d in Fig. 4 are driven 
primarily by variation across districts in αd, not βd, further reinforcing 
our findings on the relative importance of slopes and intercepts in 
driving variation in absolute upward mobility across districts. 

Third, we aggregate our estimates of academic mobility up to the 
commuting-zone and county levels in order to correlate them to external 
estimates of intergenerational economic mobility from CHKS (2014) and 
Chetty and Hendren (2018), respectively. Details for this portion of our 
analysis—including discussion of a number of challenges associated 

Fig. 4. Correlates of Ō25d for each outcome, on average across states. Notes: The bars represent cross-state averages of coefficient estimates from univariate re-
gressions of Ō25d for each outcome on a wide range of district and local-area attributes. All independent variables are standardized so that the interpretation of each 
coefficient is in standard-deviation units. Simple average values of the coefficients across states are reported. The top vertical panel shows correlates constructed 
using the state administrative education datasets. The bottom vertical panel shows correlates taken from the NCES (either from the EDGE program based on data for 
parents with school-aged children, or the District Finance Survey, as described in the text). The state-by-state results underlying this figure are reported in 
Appendix Table A4, which includes information on the statistical significance of individual coefficients in individual states. 

Table 11 
Correlations of district-level value added to student achievement with αd and βd.   

Grade-8 Test HS Test Grad Grad + 1  

α β α β α β α β 

All (Avg)  0.35  0.05 0.21  0.02  0.14  ¡0.10  0.14  ¡0.10 
GA  0.29  − 0.14 0.15  − 0.18  0.00  0.05  − 0.01  0.06 
MA  0.28  0.21 0.23  0.17  0.17  − 0.14  0.17  − 0.15 
MI  0.40  0.15 0.33  0.18  0.22  − 0.20  0.21  − 0.20 
MO  0.34  0.05 0.19  0.01  0.14  − 0.16  0.18  − 0.20 
OR  0.47  − 0.04 Not Applicable  0.13  − 0.02  0.08  0.03 
TX  0.32  − 0.03 0.23  − 0.10  0.12  − 0.07  0.16  − 0.12 
WA  0.32  0.16 0.11  0.06  0.21  − 0.15  0.18  − 0.13 

Notes: See Appendix D for information about our procedure for estimating value added for each district. Oregon does not offer a high school test taken in a (near) 
universal grade, so Oregon is omitted from the HS test results. 
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with linking our estimates of intragenerational academic mobility to 
their estimates of intergenerational economic mobility—are provided in 
Appendix E. A high-level summary of the results is as follows. There is 
insufficient cross-commuting-zone variance in academic mobility to 
account for observed variance in economic mobility at this same level of 
geography (also see Rothstein, 2019).26 A key factor contributing to this 
result is that most of the variance in academic mobility across school 
districts occurs within, and not between, commuting zones.27 Between 
counties there is more variation in academic mobility because counties 
typically cover much smaller geographic areas. In Appendix E, we show 
our estimates of academic mobiltiy are positively correlated with Chetty 
and Hendren’s economic mobility estimates at the county level. While 
we are hesitant to draw strong conclusions from the correlations, they at 
least allow for the possibility of a substantive link between academic and 
economic mobility. 

5. Conclusion 

We introduce the concept of “academic mobility” and use it to study 
the distributional stickiness of student performance during K-12 
schooling. On the whole, we find that academic mobility in the educa-
tion system is limited—students’ ranks in the academic performance 
distribution in the third grade are highly predictive of their ranks in 
higher grades. However, we also estimate statistically significant and 
educationally meaningful differences in academic mobility across school 
districts. Initially low-performing students who attend districts one 
standard deviation higher in the academic mobility distribution perform 
about 5 percentile points higher on tests in the eighth grade and high 
school relative to their peers who attend districts with average mobility. 
They are also 5–6 percentage points more likely to graduate from high 
school. 

Our analysis of academic mobility across student groups divided by 
race-ethnicity, eligibility for free and reduced-price lunch, and district 
urbanicity produces patterns that are largely as expected based on 
existing research. Still, some results stand out. One is the large and 
consistent upward mobility advantage among Asian students relative to 
all other racial/ethnic groups. Another is that initially low-performing 
students in rural districts have broadly similar upward mobility to 
their suburban peers, which is at odds with the prevailing theme of the 
“rural schools problem” in education research (Burton et al., 2013). 

When we decompose total academic mobility into its components 
and examine cross-district heterogeneity, we find cross-district differ-
ences in baseline mobility are the primary driver of cross-district vari-
ance in total academic mobility. This suggests low-performing students 
experience the largest performance gains when attending districts where 
students generally excel. It also casts doubt on the narrative that districts 
vary substantially in the degree to which they narrow within-district 
achievement gaps as students progress through school. 

We correlate absolute upward mobility with a wide array of district 
and local-area characteristics. We find that absolute upward mobility is 
largest in socioeconomically advantaged areas as measured along a 
variety of dimensions. We also show districts with high value added to 
student test scores have significantly higher upward mobility (as 

measured by test and non-test outcomes). 
Finally, we briefly consider the potential for differences in academic 

mobility to explain geographic variation in economic mobility across 
commuting zones and counties. Variation in academic mobility cannot 
explain a meaningful fraction of the variance in economic mobility 
across commuting zones documented by CHKS (2014), corroborating 
related findings from Rothstein (2019). There is much more variation in 
academic mobility at the county level, and we find that county-level 
estimates of academic and economic mobility are positively 
correlated.28 

It bears repeating that our academic mobility metrics do not carry a 
causal interpretation. We do not know if our estimates reflect the true 
impacts of the local areas we define by school districts, or something else 
like the selection of families (Bruhn, 2020; Chyn and Katz, 2021). 
Moreover, if we overcome this hurdle and can recover causal estimates 
of these areas—an objective we intend to pursue in future research—it 
will still be difficult to assess what it is about them that drives the 
findings (inclusive of factors inside and outside of schools). These are 
problems endemic to the burgeoning field of place-based research 
(Chetty et al., 2020; Harding et al., 2021; Kaestner, 2020). Noting this 
important caveat, our findings illuminate broad patterns in academic 
mobility and suggest directions for future research that will create a 
body of evidence to guide the development of policies that support ac-
ademic mobility. 
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Goldhaber, D., Özek, U., 2019. How much should we reply on student test achievement 

as a measure of success? Educ. Res. 48 (7), 479–483. 
Hanushek, E.A., Rivkin, S.G., 2009. Harming the best: How schools affect the black-white 

achievement gap. J. Policy Anal. Manage. 28 (3), 366–393. 
Harding, D.J., Sanbonmatsu, L., Duncan, G.J., Gennetian, L.A., Katz, L.F., Kessler, R.C., 

Kling, J.R., Sciandra, M., and Ludwig, J. (2021). Evaluating contradictory 
experimental and non-experimental estimates of neighborhood effects on economic 
outcomes for adults. NBER Working Paper No. 28454. Cambridge, MA: National 
Bureau of Economic Research. 

Haskins, R., Rouse, C., 2005. Closing Achievement Gaps. Policy Brief. Princeton- 
Brookings, Washington DC.  

Jang, H., Reardon, S.F., 2019. States as sites of educational (in)equality: State contexts 
and the socioeconomic achievement gradient. AERA Open 5 (3), 1–22. 

Kaestner, R., 2020. The moving to opportunity experiment: What do heterogeneous 
estimates of the effect of moving imply about causes? Econ Journal Watch 17 (2), 
282–298. 

Koedel, C., Parsons, E., 2021. The effect of the community eligibility provision on the 
ability of free and reduced-price meal data to identify disadvantaged students. Educ. 
Eval. Policy Anal. 43 (1), 3–31. 

Kraft, M.A. (2017). Teacher effects on complex cognitive skills and social-emotional 
competencies.“ Journal of Human Resources, vol. 54, no. 1, 2017, pp. 1-36. 

Laliberte, J.W., 2021. Long-term contextual effects in education: Schools and 
neighborhoods. Am. Econ. J. Econ. Pol. 13 (2), 336–377. 

Lefgren, L., Sims, D.P., 2012. Using subject test scores efficiently to predict teacher value- 
added. Educ. Eval. Policy Anal. 34 (1), 109–121. 

Lockwood, J.R., McCaffrey, D.F., 2014. Correcting for Test Score Measurement Error in 
ANCOVA Models for Estimating Treatment Effects. J. Educ. Behav. Stat. 39 (1), 
22–52. 

May, K., Nicewander, W.A., 1994. Reliability and Information Functions for Percentile 
Ranks. J. Educ. Meas. 31 (4), 313–325. 

McDonough, I.K., 2015. Dynamics of the black-white gap in academic achievement. 
Econ. Educ. Rev. 47, 17–33. 

Murphy, R., Weinhardt, F., 2020. Top of the class: The importance of ordinal rank. Rev. 
Econ. Stud. 87, 2777–2826. 

National Center for Education Statistics. (2022). Public Charter School Enrollment. 
Condition of Education. U.S. Department of Education, Institute of Education 
Sciences. Retrieved 10.15.2022 from https://nces.ed.gov/programs/coe/indicator/ 
cgb. 

Parsons, E., Koedel, C., Podgursky, M., Ehlert, M., Xiang, P.B., 2015. Incorporating End- 
of-Course Exam Timing into Educational Performance Evaluations. J. Res. Educ. 
Effect. 8 (1), 130–147. 

Parsons, E., Koedel, C., Tan, L., 2019. Accounting for Student Disadvantage in Value- 
Added Models. J. Educ. Behav. Stat. 44 (2), 144–179. 

Reardon, S.F., 2011. The widening academic achievement gap between the rich and the 
poor: New evidence and possible explanations. In: Duncan, G.J., Murnane, R.J. 
(Eds.), Whither Opportunity? Rising Inequality, Schools, and Children’s Life 
Chances. Russell Sage Foundation, New York, NY, pp. 91–115. 

Reardon, S.F., Galindo, C., 2009. The Hispanic-White Achievement Gap in Math and 
Reading in the Elementary Grades. Am. Educ. Res. J. 46 (3), 853–891. 

Rothstein, J., 2019. Inequality of educational opportunity? Schools as mediators of the 
intergenerational transmission of income. J. Labor Econ. 37 (S1), S85–S123. 

Schoefer, B., Ziv, O., 2021. Productivity, place, and plants: Revisiting the measurement. 
Unpublished manuscript. UC Berkeley Department of Economics. 

Solon, G., 1999. Intergenerational mobility in the labor market. In: Ashenfelter, O., 
Card, D. (Eds.), Handbook of Labor Economics, Vol. 3. Elsevier, Amsterdam, 
pp. 1761–1800. 

Spearman, C., 1904. The proof and measurement of association between two things. Am. 
J. Psychol. 15, 72–101. 

Tavakol, M., and Dennick, R. (2011). Making sense of Cronbach’s alpha. International 
Journal of Medical Education 2, 53-55. 

Todd, P.E., Wolpin, K.I., 2007. The production of cognitive achievement in children: 
Home, school, and racial test score gaps. J. Hum. Cap. 1 (1), 91–136. 

Wang, M., Stanley, J., 1970. Differential weighting: A review of methods and empirical 
studies. Rev. Educ. Res. 40, 663–705. 

Further reading 

Castex, G., Kogan Dechter, E., 2014. The changing roles of education and ability in wage 
determination. J. Labor Econ. 32 (4), 685–710. 

Chetty, R., Friedman, J.N., Hilger, N., Saez, E., Schanzenbach, D.W., Yagan, D., 2011. 
How does your kindergarten classroom affect your earnings? Evidence from Project 
Star. Q. J. Econ. 126 (4), 1593–1660. 

Chetty, R., Friedman, J.N., Rockoff, J.E., 2014a. Measuring the impacts of teacher I: 
Evaluating bias in teacher value-added estimates. Am. Econ. Rev. 104 (9), 
2593–2632. 

W. Austin et al.                                                                                                                                                                                                                                 

https://doi.org/10.1016/j.jpubeco.2023.105016
https://doi.org/10.1016/j.jpubeco.2023.105016
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0005
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0005
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0010
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0010
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0015
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0015
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0020
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0020
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0020
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0025
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0025
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0030
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0030
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0035
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0035
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0045
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0045
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0045
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0050
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0050
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0050
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0055
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0055
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0075
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0075
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0075
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0080
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0080
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0080
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0080
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0080
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0085
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0085
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0090
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0090
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0100
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0100
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0105
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0105
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0110
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0110
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0115
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0115
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0120
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0120
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0125
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0125
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0125
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0130
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0130
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0135
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0135
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0140
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0140
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0150
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0155
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0155
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0160
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0160
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0170
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0170
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0175
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0175
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0180
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0180
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0180
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0185
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0185
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0185
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0195
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0195
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0205
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0205
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0210
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0210
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0210
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0215
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0215
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0220
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0220
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0230
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0230
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0240
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0240
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0240
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0245
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0245
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0250
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0250
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0250
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0250
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0255
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0255
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0260
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0260
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0265
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0265
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0270
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0270
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0270
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0275
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0275
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0285
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0285
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0290
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0290
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0040
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0040
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0060
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0060
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0060
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0065
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0065
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0065


Journal of Public Economics 228 (2023) 105016

18

Chetty, R., Friedman, J.N., Rockoff, J.E., 2014b. Measuring the impacts of teacher II: 
Teacher value-added and student outcomes in adulthood. Am. Econ. Rev. 104 (9), 
2633–2679. 

Clark, D., Martorell, P., 2014. The signaling value of a high school diploma. J. Polit. 
Econ. 122 (2), 282–318. 

Ferrer, A., Riddell, W., 2008. Education, credentials, and immigrant earnings. Can. J. 
Econ. 41 (1), 186–216. 

Lazear, E.P., 2003. Teacher incentives. Swedish. Econ. Policy Rev. 10 (3), 179–214. 
Mulligan (1999). Galton versus the human capital approach to inheritance. Journal of 

Political Economy 107, S184–S224. 

W. Austin et al.                                                                                                                                                                                                                                 

http://refhub.elsevier.com/S0047-2727(23)00198-6/h0070
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0070
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0070
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0095
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0095
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0145
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0145
http://refhub.elsevier.com/S0047-2727(23)00198-6/h0200

	Academic mobility in U.S. public schools: Evidence from nearly 3 million students
	1 Introduction
	2 Data and measurement of academic mobility
	2.1 Data
	2.2 Measuring academic mobility
	2.2.1 Overview
	2.2.2 Estimation details
	2.2.2.1 Measurement error in Students’ initial test scores
	2.2.2.2 Geographic mobility



	3 Findings
	3.1 Broad patterns of academic mobility at the state level
	3.2 Academic mobility for student subgroups within states
	3.3 District-Level variation in mobility and Cross-Outcome, Cross-Cohort correlations

	4 Correlates of academic mobility
	4.1 Primary correlates
	4.2 Extensions

	5 Conclusion
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Appendix A Supplementary material
	References
	Further reading


