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Abstract

It has become commonplace to measure teacher quality in terms of

teacher value-added. Operationally, this means evaluating teachers

according to the learning gains of students on various achievement

tests. Existing research consistently shows large variations in teacher

effectiveness, much of which is within schools as opposed to between

schools. The policy implications of these variations are dramatic. But

the underlying statistical modeling has become the subject of intense

research, in part because of this direct use of value-added measures

in policy discussions.
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1. INTRODUCTION

Children, parents, administrators, and policy makers all tend to focus on the quality of

teaching as the key determinant of school quality. However, the failure of observed teacher

characteristics, including education and experience, to account for much of the variation

in student test scores or other outcomes has presented researchers with an apparent

conundrum. Although the absence of a strong relationship between outcomes and these

characteristics is consistent with the idea that teacher quality is not an important deter-

minant of learning, it is also consistent with the possibility that these quantifiable charac-

teristics are simply poor measures of teacher effectiveness. In fact, recent outcome-based

estimates find substantial variation in teacher contributions to achievement, supporting

both the latter interpretation and the general emphasis on teacher quality.

Easily quantifiable characteristics explain little of the variation in teacher effectiveness,

and this has important implications for the development of policies designed to raise the

quality of instruction and to reduce unequal access to high-quality teachers. First, neither

a graduate degree nor additional years of experience past the initial year or two translate

into significantly higher instructional effectiveness, bringing into question a salary struc-

ture based almost entirely on these two variables. Second, descriptions of unequal access to

quality teachers as measured by experience, education, or other quantifiable characteristics

fail to portray accurately any actual differences in the quality of instruction by student

demographics, community characteristics, and specific schools. Third, the failure of quan-

tifiable characteristics to explain much of the variation in teacher effectiveness suggests

that efforts to raise the quality of instruction through more stringent requirements for

entering the teaching profession may be seriously misguided, particularly as they may

discourage many from entering the profession by raising the cost of becoming a teacher.

Fourth, the focus on student outcomes—highlighted by state and federal accountability

systems, including No Child Left Behind—has led to attempts to legislate better teachers,

although these efforts have not circumvented the problems of defining an effective teacher.1

The analysis of teacher effectiveness has largely turned away from attempts to identify

specific characteristics of teachers. Instead attention has focused directly on the relation-

ship between teachers and student outcomes. This outcome-based perspective, now com-

monly called value-added analysis, takes the perspective that a good teacher is simply one

who consistently gets higher achievement from students (after controlling for other deter-

minants of student achievement such as family influences or prior teachers). The under-

lying analysis has focused on statistical estimation that separates teacher influences from

other factors, and most typically it has relied on administrative data from schools.

The current discussion of value-added measures of teacher effectiveness is not so much

about the conceptual approach as it is about the details of the analysis and the interpreta-

tion of the results. The debate has been heightened by the direct introduction of value-

added estimates into teacher evaluations and personnel decisions (see, e.g., Isenberg &

Hock 2010) and by the public identification of teachers according to value-added in the

newspapers (Song & Felch 2011). This interaction with actual policy decisions plus the

larger focus of recent education reforms on student outcomes has contributed to growing

1No Child Left Behind introduced a requirement for “highly qualified teachers” within schools serving disadvan-

taged students. This requirement was phrased in terms of qualifications as opposed to effectiveness in the classroom,

and the definitions of highly qualified were left up to the separate states. As a result, most states simply inserted

variants of the existing requirements for teacher certification (see Chubb 2009, Hanushek 2009).

Value-added of

teachers: the separate

contribution of
teachers to learning

gains, independent of

family, peer, and other

influences
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scholarly discussion of the validity of outcome-based, or value-added, estimates of teacher

quality. Rothstein (2010) provides evidence that sorting both among and within schools

may bias estimates of teacher effectiveness, and Meghir & Palme (2005) emphasize the

possibility that school and family responses endogenous to realized teacher quality con-

tribute to observed achievement. Other analyses have emphasized the importance of mea-

surement error in using test outcome data (e.g., Kane & Staiger 2002, McCaffrey et al. 2009).

We consider the existing evidence on teacher quality, the methods used to produce

those estimates, and implications of the findings for the development of teacher policies.

Section 2 summarizes baseline estimates of the variance in teacher quality based on esti-

mates of teacher fixed effects and other empirical approaches. Section 3 presents issues

related to the measurement of outcomes. Section 4 discusses potential impediments to the

identification of the teacher-quality variance caused by purposeful sorting of children and

teachers into neighborhoods, schools, and classrooms and the endogenous responses by

parents and school administrators to observed teacher effectiveness. Section 5 describes

research that considers the persistence of teacher effects over time. Section 6 provides

a discussion of selected implications for education policy, and Section 7 has some final

thoughts about efforts to raise the quality of instruction.

2. OUTCOME-BASED ESTIMATES OF THE VARIANCE IN
TEACHER EFFECTIVENESS

Research into the determinants of student outcomes and the role of teachers has changed

dramatically over the past two decades. The earliest work, generally traced back to the

“Coleman Report” (Coleman et al. 1966), was typically cross-sectional analysis that relied

on measuring the various inputs to education—from families, peers, and schools. Addi-

tionally, much of the early analyses relied on data collected for other purposes and not

specific to educational performance. More recently, the analysis has changed dramatically

as data have improved, as researchers have extended the simple analyses in a variety of

ways, and as replication of various analyses has become more feasible.

From the start, the impact of teachers was simply viewed as one of many possible inputs

to achievement. The consistent finding over four decades of research—frequently called

education production-function research in economics—has been that the most commonly

used indicators of quality differences are not closely related to achievement gain, leading

some to question whether teacher quality really matters (see the review in Hanushek &

Rivkin 2006).2 In reality, interpretations of research on teachers (and other school inputs)

often confused the estimated effects of specific teacher characteristics with the overall

contribution of teachers.

The focus on the measurement of teacher value-added to student achievement repre-

sents a shift from a research design focused on the link between student outcomes and

specific teacher characteristics to a research framework using a less parametric approach

to identify overall teacher contributions to learning. Using administrative databases (some

covering all the teachers in a state), such research provides strong support for the existence

2The Coleman Report (Coleman et al. 1966) is generally acknowledged as the beginning of this entire line of research

into the determinants of student achievement. It was commonly interpreted as finding that “schools don’t matter;”

instead, families and peers are the prime determinants of student achievement. Although this study was deeply

flawed (Hanushek & Kain 1972), portions of this conclusion still are included in public policy discussions.

www.annualreviews.org � Distribution of Teacher Quality and Implications for Policy 133

A
nn

u.
 R

ev
. E

co
n.

 2
01

2.
4:

13
1-

15
7.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 S
ta

nf
or

d 
U

ni
ve

rs
ity

 -
 M

ai
n 

C
am

pu
s 

- 
L

an
e 

M
ed

ic
al

 L
ib

ra
ry

 o
n 

09
/0

5/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.



of substantial differences in teacher effectiveness, evenwithin schools.3 Although this approach

circumvents the need to identify specific teacher characteristics related to quality, the less

parametric approach introduces additional complications and has sparked an active debate

on the measurement and subsequent policy use of estimated teacher value-added.

The precise method of attributing differences in classroom achievement to teachers is the

subject of considerable analysis, as discussed below. We begin by briefly outlining the general

analytical framework that forms the basis of much work in this area and then describe the

range of results from recent efforts to measure the variance of teacher effectiveness.

As the available research discusses in great detail, the determinants of both student and

teacher choices and the allocation of students among classrooms complicate efforts to

isolate the contributions of teachers to learning. The discussion highlights the importance

and difficulty of accounting for student and school differences that affect both own per-

formance and the classroom environment, and the likely advantages of a value-added

modeling approach that accounts explicitly for differences in the history of family, school,

and community influences. It also recognizes, however, that the value-added frame-

work does not address all potential impediments to consistent estimation of the quality of

instruction and the variance in teacher quality. Specific methods mitigate some deficiencies

and not others, although none may completely resolve the potential problems.

This section outlines the decision-making processes of families, teachers, and principals

and the potential implications of these choices for the estimation of teacher quality;

presents an empirical framework that captures potential biases from these choices and

other factors; and ends with a discussion of empirical evidence on the validity of specific

estimationmethods.4 A central issue in the empirical analysis is that the relevant participants—

families, teachers, and administrators—are not randomly assigned to schools and class-

rooms. Families choose a community and school, possibly trading off school quality with

other housing amenities (see Hanushek & Yilmaz 2007, Hanushek et al. 2011b). Teachers

and administrators also make choices along a number of relevant dimensions, including

geography, school, and individual effort. These choices must be taken into account to

identify the variation in teacher value-added to student achievement.

The basic educationalmodel implicitly underlying educational production functions is that

Agi ¼ f (Si,Xi,mi), ð1Þ
where Ag is the achievement of student i in grade g (the subscript i is suppressed when it is

not central to the discussion), S is a vector of school and peer factors,X is a vector of family

and neighborhood inputs, and m is individual student ability.

One important facet of education is that it is a cumulative process. Achievement in

grade g involves not only educational inputs in that grade, but also the whole history of

inputs that provided the basic knowledge that enters into the summative achievement in

grade g. To fix some basic ideas and to match much of the empirical analysis, assume a

linear model such that

AGi ¼
XG

g¼0

Sgijg þ
XG

g¼0

Xgigg þ
XG

g¼0

mi þ ei, ð2Þ

3The earliest academic research includes Hanushek (1971), Murnane (1975), and Armor et al. (1976). Policy interest

rose with the introduction of the ideas directly into state evaluations (Sanders & Horn 1994).

4Ballou et al. (2004) andMcCaffrey et al. (2004) provide general discussions of value-added estimation of teacher effects.
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where Sg and Xg are the vectors of school and family inputs during grade g, respectively; m is

assumed to be the constant input of ability; j and g are unknown parameters; e is a stochastic
term representing unmeasured influences; and we observe how inputs accumulate through

grade G.5 Then we can decompose the achievement determinants into current (grade G)

and prior grade influences. If we put some structure on the parameters such that they follow

a geometrically declining pattern for inputs in the more distant past (indicating that the

impact of past inputs depreciates at a constant rate y over time), we get an expression such as

AGi ¼ SGijþXGigþ mi þ eGi

þ
XG�1

g¼0

Sgij(1� y)G�g þ
XG�1

g¼0

Xgig(1� y)G�g þ
XG�1

g¼0

mi(1� y)G�g þ
XG�1

g¼0

egi(1� y)G�g. ð3Þ

We note that, if this relationship holds across grades, the second line is simply (1� y)AG�1, i

so that we can write current achievement as a function of (depreciated) past achievement plus

the inputs during gradeG:

AGi ¼ SGijþXGigþ (1� y)AG�1,i þ (mi þ eGi). ð4Þ
This expression for achievement obviously puts considerable structure on the relationship,

something that has been investigated in various forms, as indicated below.

This expression is particularly useful because few if any data sets actually track the entire

past history of family and school inputs. Equation 4 suggests that it is possible to concentrate

on the inputs in gradeG, with AG�1 capturing the contributions of historical inputs.6

In addition, many data sets including administrative data have limited information on

family income and other current family characteristics, including parental education, that

are likely related to both commitment to schooling and home resources available to

support education. Hence it is often difficult to control directly for family heterogeneity.

The availability of multiple observations for students in panel data sets, however, makes

possible alternative approaches to account for such heterogeneity. Specifically, many

studies use measures of prior achievement, student fixed effects, or a combination of the

two to account for stable differences among students not captured by the limited set of

available variables (as suggested by Equation 4).

Empirical analyses of teacher value-added typically begin with a slightly modified version

of the education production function in Equation 4 that breaks out a term for teacher inputs, tj:

AG ¼ (1� y)AG�1 þ tj þ SjjþXgþ e; ð5Þ
where tj is a teacher fixed effect that provides a measure of value-added for teacher j.7

Most empirical analyses, although not explicit, also subsume ability effects (m) from

Equation 4 into a composite error, e, although some of the discussion of sorting into

5Developments along these lines can be found in Boardman & Murnane (1979), Hanushek (1979), and, more

recently, Todd & Wolpin (2003).

6Again, this interpretation involves a number of assumptions about the additive nature of inputs. For example, it

does not allow for the “one great teacher” who has a lasting impact on the pattern of achievement (over and above

the effect on achievement in the one year). It also assumes that knowledge from all sources depreciates at the same

rate, something that comes up below in considering the persistence of teacher effects.

7Alternative estimation forms, largely restricting y, have advantages and disadvantages but are currently less frequently

employed (see Meghir & Rivkin 2011 on conceptual issues and Hanushek et al. 2009 on empirical implications).
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classrooms can be thought of as focusing on these ability effects.8 Furthermore, various

analyses focus on the precise specification of tj, such as whether it is the same for all

students or there are some heterogeneous treatment effects.9

Although we discuss further details of the estimation below, we begin simply with avail-

able estimates of the variation in teacher value-added (i.e., variation in tj).
10 The most con-

servative estimates try to guard against biases from unmeasured characteristics of families

and teachers by concentrating just on the differences among teachers within a given school.

This approach holds constant the aggregate motivation of families to be in a given school

at the cost of ignoring any variation in average teacher effectiveness across schools.11

Table 1 summarizes existing estimates of the standard deviation of teacher effectiveness

(st) expressed in units of student achievement (normalized to a standard deviation of one).12

Although covering a range of schooling environments across the United States, these studies

produce fairly similar estimates of the variance in teacher value-added: The average standard

deviation is 0.13 for reading and 0.17 for math, and the distributions for both are fairly tight.

We note also that these estimates rely on just within-school variation in value-added, ignoring

the surprisingly small between-school component. The between-school component is not

typically considered because of potential sorting, testing, and other interpretative problems.13

The magnitudes of these estimates support the belief that teacher quality is an important

determinant of school quality and achievement. For example, themath results imply that having

a teacher at the 25th percentile as compared to the 75th percentile of the quality distribution

would mean a difference in learning gains of roughly 0.2 standard deviations in a single year.

This wouldmove a student at the middle of the achievement distribution to the 58th percentile.

The magnitude of such an effect is large both relative to typical measures of black-white or

income achievement gaps of 0.7–1 standard deviations and compared to methodologically

compelling estimates of the effects of a ten-student reduction in class size of 0.1–0.3 standard

deviations. We discuss the economic value of these differences in teacher effectiveness below.

3. OUTCOME MEASUREMENT ISSUES14

Test measurement error can complicate the outcome-based estimation of teacher quality.

Four test measurement issues receive considerable attention in both the research literature

8For the most part, all estimates employ OLS estimation in a panel context.

9One issue that is not explicitly considered here is that of peer interactions and their effect on achievement. Although

there is a substantial literature on this (see the review in Sacerdote 2011), the consideration of peer interactions and

of teacher quality has been almost completely separate in the literature—and we follow that history in this discussion.

10Again, this may be interpreted as the average treatment effect, and (as discussed below) some attempts have been

made to look at specific dimensions of heterogeneous effects. These differences appear relatively small, however,

compared to the overall estimated variation in teacher value-added.

11Families have been seen to choose schools based on school value-added (see Hanushek et al. 2004a). The differ-

ences in demand show up in housing price variations, although the measurement of school quality varies widely

across studies (see Black & Machin 2011).

12Some questions remain about whether performance on different tests can be compared through this normalization.

At the very least, such comparisons require assumptions about the psychometric property of the tests such as

normality of the distribution. Some analyses, as described below, consider such issues directly.

13The study by Kane & Staiger (2008) is the one exception that does not exclude the between-school component.

Hanushek & Rivkin (2010a) provide estimates of the within- and between-school variation in value-added under

different specifications.

14Ishii & Rivkin (2009) expand on many issues considered in this and the next section.

Within-school

variance: the variation

in student
achievement found

inside schools as

opposed to between

schools; often the
focus of estimates of

teacher value-added

Test measurement

error: the portion

of test scores that
does not reflect the

true knowledge

of a student in a

given domain
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and broader policy discussion: (a) random measurement error, (b) the focus of tests on

particular portions of the achievement distribution, (c) cardinal versus ordinal compari-

sons of test scores, and (d) the multidimensionality of education outcomes. Not only do the

test measurement issues introduce noise into the estimates of teacher effectiveness, but

they also bias upward estimates of the variance in teacher quality.

The fixed-effect estimator is the conditional mean performance for a teacher’s students,

given the prior achievement levels of the students and other factors explicitly considered,

i.e., the S and X. This estimated value of teacher quality, t̂j, is the true value of teacher

quality, tj, plus estimation error, nj:

t̂j ¼ tj þ nj. ð6Þ
Considerable attention has been devoted to the magnitude and character of test mea-

surement error.15 If the only error in Equation 5 comes from error in the individual

measurement of achievement, the random test measurement error introduces sampling

error into the estimates of the teacher fixed effects, nj. When the test measurement errors

are uncorrelated with true teacher quality and the expected value of nj equals zero, the

estimates of teacher effects will be unbiased, but there will be an upward bias in the

estimated variance of teacher quality. In particular, the estimated variance based on raw

15This attention to test measurement error can be traced back to early work on school accountability by Kane &

Staiger (2002).

Table 1 The distribution of teacher effectiveness (standard deviations of

student achievement)

Study Location

Teacher effectiveness (st)

Reading Math

Rockoff (2004) New Jersey 0.10 0.11

Nye et al. (2004) Tennessee 0.07 0.13

Rivkin et al. (2005) Texas 0.15 0.11

Aaronson et al. (2007) Chicago 0.13

Kane et al. (2008) New York City 0.08 0.11

Jacob & Lefgren (2008) Midwest city? 0.12 0.26

Kane & Staiger (2008) Los Angeles 0.18 0.22

Koedel & Betts (2011) San Diego 0.23

Rothstein (2009) North Carolina 0.11

Hanushek & Rivkin (2010a) Texas city? 0.11

Average 0.13 0.17

All estimates indicate the standard deviation of teacher effectiveness in terms of student

achievement standardized to mean zero and variance one. All are corrected for test measure-

ment error. All except Kane & Staiger (2008) use within-school estimators. Table taken

from Hanushek & Rivkin (2010b).
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test scores would equal var(t̂) ¼ var(t)þ var(n). In this case, var(n) is a direct function of

the variance of test measurement error.

All the estimates of the variance in teacher effectiveness in Table 1 were adjusted in one

way or another for test measurement error. One common approach is the empirical Bayes

approach that adjusts the estimates by producing weighted averages of the actual estimates

and the grand mean, in which the weights are a function of the estimated variance (see, e.g.,

Kane & Staiger 2002, Jacob & Lefgren 2008).16 The impact of this adjustment is to pull

each of the individual estimates toward the grand mean and, as a result, reduce the

variance of the estimates. As Kane & Staiger illustrate in a slightly different context,

sample size is the primary determinant of differences in the error variance; consequently,

the grand mean tends to receive higher weight for teachers with fewer students.

Alternatively, assuming that the confounding measurement error is uncorrelated across

years, the correlation of the fixed-effect estimates for the same teachers across years would

equal the ratio of the variance of true teacher quality divided by the variance of estimated

teacher quality, r12 ¼ var(t)=var(t̂). Multiplication of the estimated variance of t̂ by the

estimated year-to-year correlation would provide a consistent estimate of the overall vari-

ance in teacher quality corrected for the random contributions of test error and the other

factors (see Hanushek et al. 2005, McCaffrey et al. 2009).

A potential problem with efforts to remove the non-teacher-quality components of the

variance estimate relates to variation in teacher quality over time or across students. For

the most part, studies have defined teacher quality as the stable component of teacher

effects on students. But in a year when a teacher simply has a “bad year” for one reason

or another, the teacher’s impact on the students reflects this problem. The seriousness of

this issue, perhaps including whether alternative definitions of teacher quality should be

employed, is currently unknown—in part because it is difficult analytically to separate

variations in teacher quality from random errors not associated with the teachers.17 Simi-

larly, heterogeneity in teacher quality by student demographic characteristics (perhaps

owing to the benefits of a same-race or same-gender teacher) or skills (some teachers may

be more effective with students in particular parts of the achievement distribution) will

tend to increase the standard error in models that impose homogeneous effects (see Dee

2005, Hanushek et al. 2005, Lockwood & McCaffrey 2009). The standard focus on the

“persistent” component of teacher quality ignores heterogeneity along these dimensions,

which may be appropriate depending on the use of the estimates.18

The second and third issues concerning assessment differences across the knowledge

distribution and the appropriate interpretation of test results are related in both substance

and proposed solutions. First, there are complications introduced by the coverage of a test.

If the degree of overlap between the curriculum and test varies, then estimates of value-

added will not produce consistent rankings of teacher effectiveness. Consider first a test

that focuses on basic skills and a class filled with students working above grade level. In

this case, the efforts and efficacy of the current teacher can have virtually no impact on test

16Morris (1983) describes the empirical Bayes shrinkage estimator.

17In some instances, researchers have attempted to consider whether the impact of a teacher changes with a move to

another school, thus allowing for variations in teacher quality (e.g., Jackson & Bruegmann 2009, Goldhaber et al.

2011). They have provide mixed evidence on any changes in teacher performance.

18When the approach to measurement error is an empirical Bayes method, ignoring these components tends to

lead to greater shrinkage toward the grand mean for particular teachers.
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results, and thus the estimate of value-added for that teacher would not be based on true

performance. More generally, the less overlap there is between test coverage and the

prescribed curriculum, the less informative are the estimates.

Second, consider assumptions related to test scaling and the meaning of test-score

changes in various parts of the test distribution. There is an ongoing debate among

psychometricians over the construction of vertically scaled tests for which a one unit change

in score has similar meaning across the distribution in terms of actual knowledge gained

(see, e.g., Koretz 2008, Braun et al. 2010). Many argue that even those tests assumed to be

vertically scaled actually do not satisfy this criterion, and many tests administered in schools

do not even claim to have this property. Such concerns have led some to focus solely on

the ordinal properties of test results, for example, on percentile scores. Yet percentile score

measures also do not avoid assumptions about scaling, as it takes a larger change in knowl-

edge to move a given number of percentile points in the tails of the distribution. Therefore,

two similar effective teachers may produce very different average changes in student

percentile rankings with different distributions of students.

One approach designed to address both scaling and test-focus concerns is to compare each

student with all students in the sample with similar prior test-score performance (see, e.g.,

Neal 2011). There are several different manifestations of this type of model, but essentially

teachers would be judged by how their students perform relative to students at similar levels

of achievement in other classrooms. For example, one could estimate a model with teacher

fixed effects in which the percentile score would be regressed on dummy variables for each

percentile of the prior-year score (and potentially scores in previous years or other subjects),

and other controls. Alternatively, quantile treatment-effect methods could be used to calcu-

late the median (or other) score percentile given the prior-year distribution of achievement.

Percentile growth models, discussed here for the evaluation of teacher effectiveness, have

been introduced into the accountability system of some states (e.g., Colorado).19

The final issue concerns the interpretation of estimates of teacher productivity. Educa-

tion is a multidimensional enterprise in which schools seek to foster learning along a

number of academic as well as nonacademic dimensions. Because teachers allocate time

among various endeavors in pursuit of a number of objectives, estimates of teacher quality

should ideally incorporate the time allocated to the type of instruction in question to

generate meaningful measures of effectiveness. If it takes one teacher twice as long as

another to produce a given amount of mathematics learning, that teacher should be judged

as half as productive in this area. Yet in reality, a lack of information on teachers’ time

allocation prevents adjustments for time spent on a given task.20

4. OTHER IMPEDIMENTS TO THE ESTIMATION OF
TEACHER QUALITY

Although the outcome measurement issues have been rather thoroughly addressed, another

set of issues evokes considerable current discussion and disagreement. In particular, the

19Moreover, such comparisons are embedded into some state accountability systems such as Colorado (Betebenner 2007).

20Little analytical work has gone into identifying multiple outcomes, although it has entered directly into policy

applications in which alternative teacher assessments enter even when value-added measures are available and

when multiple value-added measures are combined [see, e.g., the IMPACT evaluation system in Washington, DC

(http://www.dc.gov/DCPS/impact)].
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myriad decisions of families, administrators, teachers, and students that determine the

distributions of students and teachers in schools and classrooms raise concerns about

the validity of estimates of teacher value-added. This section begins with a discussion of

the various levels of choices and then turns to a discussion of the empirical evidence.

4.1. Purposeful Choices of Families, Teachers, and Schools

Residential location, school choice, classroom allocation, and academic support deci-

sions complicate the estimation of teacher quality, and researchers have used a variety of

methods to isolate the contributions of teachers. These include the use of student fixed

effects and prior test scores to account for unobserved student heterogeneity and school

fixed effects to account for unobserved differences in a range of school factors. Yet con-

cerns remain that the endogenous sorting of children among classrooms biases estimates of

both teacher quality and its variance. For example, Rothstein (2010) focuses on potential

biases introduced by sorting on the basis of time-varying unobservables.21

The direction of any bias would depend on the character of that sorting, which would

be determined largely by the principal’s objective function. An egalitarian principal might

place more disruptive children with a higher-quality teacher, whereas a principal that

desires to please the senior staff might give experienced teachers the more compliant,

intellectually engaged children. These alternative allocation mechanisms produce very dif-

ferent distributions of achievement within schools and different patterns of potential bias

in the absence of adequate controls for classroom heterogeneity.

The direction of any bias also depends on the character of teacher sorting among

communities and schools. Evidence on teacher preferences suggests that teachers tend to

prefer schools with higher-achieving students and appear to have heterogeneous prefer-

ences regarding school location and characteristics related to student race and ethnicity.22

Survey evidence also suggests that principal behavior influences the probability that a

teacher remains in a school, which potentially introduces a link between teacher quality and

principal behavior.23 Together these findings suggest the existence of a positive correlation

between teacher supply and factors that contribute to higher achievement (Hanushek &

Rivkin 2007). To the extent that schools exploit superior positions in the teacher labor

market by employing more effective teachers, unobserved student heterogeneity is likely

to inflate the between-school component of the estimated variance in teacher quality.

The possibility of endogenous school and family responses to realized teacher quality

complicates estimation even further. In the absence of information on the prevalence of

the intervention of teachers or family support, the estimates of teacher effectiveness

combine the actual teacher effect with these other influences. In the case of classroom

support, it is likely that the allocation of resources is compensatory, meaning that it

would bias estimates of teacher productivity toward the mean and estimates of the

variance in teacher quality downward. With regards to family influences, Kim (2001),

Todd & Wolpin (2003), and Meghir & Palme (2005) point out that estimates of school

21Note that this is not a story of peer interactions but one of unmeasured student attributes associated with teachers

that lead to bias in Equation 6.

22Boyd et al. (2005) and Hanushek et al. (2004b) describe differences in teacher sorting by race.

23Loeb et al. (2005) discuss the relationship between teacher turnover and working conditions. Branch et al. (2012)

analyze how principal quality affects teacher mobility and teacher quality.
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and teacher effects incorporate family responses that vary systematically with input quality.

If families tend to contribute more time and money to academic support during periods

in which they perceive the teacher as inadequate or of low quality, this will tend to bias

downward estimates of the variation in teacher quality and bias estimates of the quality of

specific teachers toward the mean. However, if one component of high-quality teaching is

raising the level of difficulty, higher-quality teachers may actually increase the likelihood

that students seek help outside of school, and estimates of teacher fixed effects could be

biased away from zero and the estimated variance could be biased upward. In either case, it

is not adequate to represent families as fixed inputs into the education production process,

meaning that even the inclusion of student fixed effects could fail to account for potentially

important family influences.

4.2. Empirical Evidence on the Validity of Estimates

This section considers evidence on the validity of nonexperimental estimates of teacher

value-added. We begin with a paper by Kane & Staiger that finds evidence in support of

the validity of value-added estimates of teacher fixed effects from an analysis of data

from a random assignment experiment. Next we discuss research by Rothstein (2010) that

finds evidence that widely used value-added specifications are subject to considerable bias

and research by Koedel & Betts (2011) that extends Rothstein’s analysis by considering

samples with multiple years, rather than a single year, of data for each teacher. This leads

to a brief discussion of Guarino et al. (2011), which examines the performance of various

value-added models under different data-generating processes. Finally, we consider the

new test of bias based on teacher mobility introduced by Chetty et al. (2011b).

Recognizing the threat of student sorting both within and between schools to the

estimation of teacher value-added, Kane & Staiger (2008) use experimental data generated

by a random assignment study of the National Board for Professional Teaching Standards

Certification Program to investigate the validity of nonexperimental estimates of teacher

value-added. In the study, pairs of teachers are identified in each school, one with and the

other without certification, and classrooms are randomly assigned to the pairs. The differ-

ence in the average test scores of the classrooms is regressed on the difference in empirical

Bayes estimates of value-added for the same pair of teachers based on multiple years of

data from years prior to the experiment to examine the validity of the estimation based on

nonexperimental data. The authors develop a specification test of the hypothesis that the

nonexperimental estimates provide consistent estimates of the difference in teacher effec-

tiveness. Results of the empirical analysis are consistent with the hypothesis that sorting

on unobservables does not confound the estimates of teacher value-added based on obser-

vational data in their sample.

It should be noted that the test does have some limitations. First, given the small

sample size, the test lacks power in that the acceptance region includes values that

would reflect significant sorting on unobservables that would bias the estimates. Sec-

ond, the compensatory assignment of better teachers to more difficult students reduces

the probability of not rejecting the null hypothesis of no sorting on unobservables when

it is false. Finally, the small group of schools in which principals agreed to permit classes

to be randomly assigned to teachers is unlikely to be representative, meaning that

evidence of the validity of value-added estimates with this sample may not generalize

beyond this sample.
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The aforementioned analysis covers a small sample of teachers in schools that agreed

to participate in an experiment, and this both weakens the power of the test and raises

questions about the generalizability of the findings. By comparison, Rothstein (2009,

2010) evaluates some widely used models of teacher value-added using a large sample of

North Carolina schools drawn from state administrative data. In contrast to the findings

presented in Kane & Staiger (2008), Rothstein finds evidence that time-varying unobserved

heterogeneity introduces bias into the estimates of teacher value-added for a number of

widely used specifications. Importantly, this finding emerges even for school fixed-effect

models that focus solely on within-school variation in teacher effectiveness. It appears that

the models in question do not account fully for nonrandom sorting into classrooms on the

basis of time-varying factors, as Rothstein finds that the strict exogeneity assumption is

violated in specifications that include student fixed effects.

Rothstein (2010) develops falsification tests for three widely used value-added models

that investigate the presence of nonrandom classroom sorting on the basis of unobserv-

ables. The first model regresses test-score gain on indicators for schools and teachers; the

second model regresses test score on lagged test score and the same indicators; and the final

model stacks the gain observations and regresses gain on teacher indicators and student

fixed effects for a sample of students who do not switch schools.

Although the precise form of the test differs by specification, Rothstein essentially tests

whether classroom teachers in grade g account for a significant portion of the variation in

test-score gains in earlier grades. He finds strong evidence that future teachers predict

variation in test-score gains in models that do and do not restrict the coefficient on lagged

test score to equal 1, despite the fact that future teachers cannot be causally related to

achievement. Even the inclusion of student fixed effects does not eliminate the explanatory

power of future teachers, meaning that the strict exogeneity condition is violated by

dynamic sorting on unobservables. Importantly, lagged teacher indicators are also signifi-

cantly related to achievement in models that control for lagged achievement, indicating

that the dynamic sorting on unobservables is not entirely based on achievement score.

Koedel & Betts (2011) replicate Rothstein’s analysis for the San Diego school district

and then extend the empirical analysis to investigate the sensitivity of Rothstein’s findings

to the particular character of his sample. Similar to Rothstein, they find evidence of

substantial bias in estimates based on a single year of data for each teacher. However,

they also find that restricting the sample to teachers with multiple years of data signifi-

cantly attenuates the bias. This suggests that patterns of systematic sorting change over

time, perhaps to compensate teachers who received a particularly difficult draw in the

previous year.

One complication relevant for each of these analyses concerns the appropriate func-

tional form for the value-added framework. As Rothstein (2010) points out, incorrect

assumptions regarding the rate of knowledge depreciation, form of student heterogeneity,

and other factors can introduce bias, and models differ along a number of important

dimensions. Guarino et al. (2011) attempt to clarify the nature of any biases and sensitivity

to the underlying sorting patterns by examining estimates of teacher value-added from

samples produced by data-generating processes that differed according to various aspects

of student sorting among classrooms.

Not surprisingly, the authors find that the magnitude and character of biases for

different value-added models vary according to the underlying sorting mechanism.

However, they also find that the simple lagged-achievement value-added model without
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student fixed effects tends to outperform other more highly structural models across a

range of sorting types. This occurs despite the fact that this model was not the prescribed

approach in any of the cases under the specified structural model of learning with

cumulative effects and student heterogeneity. The authors conclude tentatively that this

pattern of findings suggests that the flexibility of the simpler lagged-achievement model

tends to improve performance.

In a novel analysis of the long-run impacts of teachers that we discuss below, Chetty

et al. (2011b) begin with value-added measures for a large number of teachers over time in

a large metropolitan area. They then exploit school-grade-cohort changes in achievement

that are associated with the movement of teachers with varying estimated value-added.

The predictions of how cohort achievement will change based on their estimates of teacher

quality are closely related to the observed changes, leading them to conclude that any

biases in the estimated teacher effects are small. They find no evidence of either selection

on observables or selection on unobservables.

5. PERSISTENCE OF TEACHER EFFECTS

The degree to which teacher-quality effects persist into the future constitutes an impor-

tant determinant of the importance of differences in teacher productivity. If a year with a

poor teacher can be easily reversed by a higher-quality teacher in a future grade, the cost

of having an ineffective teacher would be low. However, if the effects of teacher quality

cumulate into the future in a way that is difficult to undo, the cost would be much higher.

A small but growing number of papers either focus on or consider the issue of persistence.

Prior to discussing the findings, we consider some of the main conceptual issues related to

the question of persistence.

5.1. Conceptual Framework

Standard education production-function approaches impose specific assumptions on the

rate of knowledge accumulation and therefore treatment-effect depreciation. One of the

most common assumptions is that the rate of depreciation does not depend on the source of

the learning, be it family, teacher, or another factor. Yet this framework does not capture

some of the main ideas put forth in the work specific to teacher effects, including the

potential trade-off between teacher effects on short-term knowledge that raises only cur-

rent test scores and those on longer-term knowledge that foster learning in both the current

and subsequent years. Therefore, we introduce a framework that builds on the notion that

teachers can affect test scores by influencing either short-term or long-term knowledge.

(Jacob et al. 2010 and Carrell & West 2010 use a similar framework.) Short-term knowl-

edge refers to information that affects the current test score but has no effect on future

achievement, such as information on the specific form in which questions are asked.

Longer-term knowledge refers to information that adds to the long-run stock of human

capital. Empirically, teacher effects on subsequent-year test scores are assumed to identify

their effects on long-term knowledge, whereas those on current-year test scores reflect the

effects on both long- and short-term knowledge.

Equation 7, an expanded version of Equation 5, represents achievement (A) for student

i with teacher j in year Y as a function of achievement in year 1 (Aiy1 ), a vector of student

characteristics (X), a vector of school fixed effects for the current and previous years (jj),

Persistence: the

amount of learning in

one year that carries
over into the future
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a vector of long-term teacher effects for the current and previous years (t), a short-term

teacher effect for year y (l), and a random error (e):

AijY ¼ (1� y)Aiy1 þXiYgþ
XY

y¼2

jy þ
XY

y¼2

ty þ lj þ eijY . ð7Þ

Because long- and short-term teacher effects cannot be observed, separate identifica-

tion of these and the degree of persistence requires multiple years of data and additional

assumptions on top of those discussed in the previous section. Underlying Equation 7 is the

assumption that short-term effects disappear after the current year. Consequently, estimates

of teacher effects in the current year capture both long- and short-term effects, whereas

estimates of teacher effects on subsequent-year achievement capture only the long-term

component. If estimated effects of the year y � 2 teacher are available for years y, y � 1,

and y � 2, then comparisons between y and y � 1 provide information on the relative size

of long- and short-term effects, and comparisons between y � 1 and y � 2 provide

information on the depreciation of past teacher effects.

5.2. Empirical Findings

A small but growing number of papers estimate the persistence of teacher effects, and we

now discuss three papers from that literature: Jacob et al. (2010), Konstantopoulos (2011),

and McCaffrey et al. (2009). These papers take different approaches to the identification

of the rate of persistence, in part because of data differences. Not surprisingly, complica-

tions introduced by omitted variables or sample attrition raise concerns in each analysis.

Jacob et al. (2010) develop a multistage empirical framework that isolates the long-term

effect of teachers and find that only 20% of the initial effect persists beyond one year. First,

estimates for the quality of teacher j for students in cohort c are derived by averaging the

estimated teacher j fixed effects over all cohorts other than c; this removes unobserved

cohort c specific classroom influences from the estimate of teacher quality. Next they use

these estimates of teacher quality to instrument for grade g achievement in a regression

of achievement in grade g þ 1 on grade g achievement, classroom fixed effects, and other

controls. The coefficient on grade g achievement provides an estimate of the persistence of

teacher effects, as it captures the extent to which teacher-induced changes in grade g achieve-

ment persist into the subsequent year. Then the authors substitute achievement in grade g� 1

to estimate two-year persistence and find little change over time in the rate of persistence.

This approach provides an appealing method for identifying the persistence in teacher

effects, but a number of questions emerge regarding the interpretation of the estimates.

One question relates narrowly to the details of the method, whereas others relate to

broader issues relevant to all the studies discussed. We consider first the method-specific

concern and then turn to the broader estimation issues.

The exclusion of a student’s own cohort from the calculation of the prior-year teacher’s

effectiveness mitigates biases introduced by unobserved peer or school influences, but it

also imposes the strong assumption that the quality of a given teacher’s work does not vary

over time. If the quality of instruction fluctuates over time owing to on-the-job training,

changes in personal circumstances, changes in curriculum, or some other factor, per-

formance in other years will provide a noisy measure of instructional quality, and the

estimates of persistence will be attenuated.
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The remaining estimation issues generalize beyond the specific method used in this

paper and relate to both bias and interpretation. First, estimates of persistence that include

current-year teacher fixed effects in addition to prior-year teacher fixed effects or quality

estimates rely on changes in classroom composition for identification. If classrooms pro-

gress through school intact, there is no way to identify the separate effects of teachers

in different grades because of perfect multicollinearity. Schools with only one classroom

per grade or one teacher per subject per grade therefore provide no information unless

some students attend one of the grades in another school in the sample. In schools with

multiple classrooms per grade, identification comes from the remixing of classrooms after

each grade and school transfers. Time-varying unobservables that complicate the identifi-

cation of current-year teacher effects can also bias persistence estimates.

Second, test measurement error that inflates estimates of the variance in teacher quality

can attenuate persistence estimates if not appropriately addressed. Because fixed effects

tend to exacerbate measurement error–induced attenuation bias, the problem is likely to be

particularly problematic in this context given the presence of current classroom or teacher

fixed effects. Empirical Bayes shrinkage estimators or another method that addresses this

issue can mitigate the bias.

Third, as Jacob et al. (2010) point out, statistical properties and coverage of tests

introduce uncertainty into the meaning of any persistence estimate. The absence of strict

vertical scaling means that the amount of learning reflected in a given magnitude of test-

score growth varies across the achievement distribution. Monotonic transformations of a

given scale will alter the estimated degree of persistence, and there is no strong a priori

argument in favor of a given scaling. Test coverage and curriculum structure also influence

the interpretation of persistence estimates. If knowledge gained from a teacher in grade g

relates only to a small portion of the material tested in grade g þ 1, a finding of little or no

persistence contains little information on the actual degree to which the student retains

knowledge learned in the prior grade. This may occur for a number of reasons, including

the focus of tests on rudimentary material that is barely covered in some schools or the

lack of cumulative structure in certain subjects (e.g., biology followed by chemistry).

Fourth, within-classroom variation in current-teacher value-added could also affect

estimates of persistence. If teachers tend to focus on lower achievers who received inferior

instruction during the prior grade, classroom average value-added would overstate teacher

value-added to higher achievers and understate current-teacher value-added to lower

achievers. The failure to account for compensatory behavior by the current teacher would

tend to bias downward estimates of persistence.

These general issues affect the interpretation of persistence estimates in the work by

Jacob et al. (2010) and in the other papers referenced above to which we now turn. The

one that stands in sharpest contrast to Jacob et al. (2010) is Konstantopoulos (2011),

which finds a much higher level of persistence using data from the Tennessee STAR

experiment. Although the estimated variances of contemporaneous-year teacher effects

are not reported, the finding that a one-standard-deviation increase in teacher quality

raises subsequent-year achievement by roughly 0.1 standard deviations suggests substan-

tial persistence in teacher-quality effects.

The use of the Tennessee STAR experimental data imparts both advantages and chal-

lenges onto this study. Ideally, selection bias would not affect a study using random

assignment data, and evidence suggests that the initial kindergarten randomization was

done well. However, research by Hanushek (1999b) shows the existence of substantial
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nonrandom attrition in the subsequent years, and this can introduce bias in the estimation

of the persistence of initial teacher quality. For example, if more educationally committed

families were more sensitive to teacher quality in the decision to remain in the experimental

classes, one would expect students taught by the less effective teacher to become more

negatively selected over time. This would tend to increase the estimate of persistence above

its true value.

In addition to the issue of selection bias, the structure of the STAR experiment com-

plicates the estimation of persistence. Students initially assigned to a particular class type

are scheduled to remain in that class-size category for the duration of the experiment.

This means that in schools with only one teacher per class type, classes would remain

intact from grade to grade in the absence of entry or exit. In this case, the effects of prior-

year teachers could not be separate from those of current teachers, similar to the one-

teacher-per-grade example discussed above. This requires movement and transfers among

classrooms within the school or between schools, and such movements often introduce

selection bias as they are often not part of the initial or even follow-up randomizations.

The character of any such biases is complicated by the fact that the equations include both

indicators for current-year teachers and estimated teacher quality for the prior grade.

McCaffrey et al. (2009) take a Bayesian approach and examine persistence using data

for a large urban district. They find a rate of persistence significantly above zero but far

closer to zero than to one (no depreciation). The teacher-effect estimates do not appear to

be sensitive to the specification of the prior distribution, arbitrary rescaling of the data, or

to the use of marginal models as opposed to joint models that pool mathematics and

reading achievement. However, these estimates do not include any student background

variables, and thus unobserved heterogeneity may contaminate the estimates. Moreover,

although the estimates are not sensitive to the method used to deal with missing data, the

absence of such controls raises the probability that nonrandom attrition does introduce

substantial bias not accounted for by any of the missing data methods used in the paper.

Chetty et al. (2011b) provide a different perspective on the issue of persistence. They

relate value-added measures for teachers in grades 4–8 to student achievement in sub-

sequent years, finding that about 30% still shows up in achievement after three years.

But, perhaps more importantly, they link teacher value-added estimates to students’ sub-

sequent outcomes, including earnings in the labor market. They find that on average

a one-standard-deviation improvement in teacher value-added in a single grade raises

earnings by about 1% at age 28. In other words, the impact of individual teachers carries

through to the long-run success of students.

Clearly these estimates of persistence fail to find common ground, and this is not

surprising given differences among the studies in both methods and material tested. It

should be noted that Rothstein (2010) produces estimates similar to those of Jacob et al.

(2010), whereas Kane & Staiger (2008) produce somewhat higher estimates of persis-

tence but ones that are sensitive to the specification. Chetty et al. (2011b) show that

depreciation in the impacts over time stabilizes after about three years and that the impact

remains in life experiences after school. Many of the issues raised for the four papers

discussed in this section are also relevant to these two studies. Finally, Carrell & West

(2010) find that lasting teacher effects appear to be orthogonal to or even negatively

correlated with short-term effects for a sample of Air Force Academy students. This

pattern is consistent with the model introduced above that distinguishes between short-

and longer-term effects.
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6. SELECTED POLICY ISSUES

As noted above, one reason for broad interest in the analyses of teacher quality is the direct

relationship with policy deliberations. In this section we consider three areas of policy that

have received considerable attention in recent years. The first is the desirability of test-

based accountability as an important component of school regulations. Advocates of

accountability implicitly assume that test scores are related to important long-term out-

comes, including academic attainment and labor market performance, but some have

questioned this assumption. Second, we discuss the use of information about the impact

of achievement on economic outcomes to place a monetary value on differences in teacher

quality. Finally, we discuss a method used to reduce the size of the teaching force in

response to falling enrollment, declining budgets, or other factors. Regulations and prac-

tices in this area have long-term effects on the distribution of teacher quality, and we

consider the implications of the widely used last in, first out policy.

6.1. Achievement and Longer-Term Outcomes

Economists’ interest in human capital has largely centered on the quantity of schooling,

but school quality has received increasing consideration over time. Mincer (1970, 1974)

pioneered the study of the economic returns to additional years in school using readily

available census data. A large number of researchers have subsequently estimated Mincer

earnings functions that relate the log of individual earnings to years of schooling and labor

market experience. The Mincer earnings work has been extended in a number of studies to

incorporate the returns to achievement or school quality. This work is highly relevant to the

current debate over test-based accountability and value-added because it provides evidence

on the degree to which achievement differences translate into future differences in earnings.

The most common estimation begins with a standard Mincer earnings model with the

addition of a measure of achievement (Ai), such as

lnYi ¼ a0 þ rSi þ a1Experi þ a2Exper2i þ fAi þ ei, ð8Þ
where Yi is the earnings of individual i, S is school attainment, Exper is potential labor

market experience, and e is a random error. When cognitive skills are standardized to

mean zero and a standard deviation of one, f is interpreted simply as the percentage

increase in annual earnings that can be attributable to a one-standard-deviation increase

in achievement.24

Table 2 summarizes different estimates of the impact of test performance on earnings

(f). The first three studies listed consider young workers (Mulligan 1999, Murnane et al.

2000, Lazear 2003). These studies employ different nationally representative data sets that

follow students after they leave school and enter the labor force. When scores are stan-

dardized, they suggest that one-standard-deviation increase in mathematics performance

Mincer earnings

function: the common

statistical model,
named after

Jacob Mincer, that

explains individual

earnings in terms of
school attainment

and experience

24Much of the labor economics consideration of earnings determination has focused on the estimates of r, inter-

preted as the rate of return on schooling (see Card 2001, but also the re-interpretation in Heckman et al. 2006). An

underlying theme has been the influence of unmeasured ability on both the decision to attend further schooling and

subsequent earnings, and one approach has been to add measured achievement to reflect ability. The interpretation

that we give is that there is no conceptual difference between ability and achievement, that they can be measured with

the same instruments, and that (borrowing from the educational production-function literature) achievement can

be affected by schools.
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at the end of high school translates into 10%–15% higher annual earnings.25 The estimates

do, however, come early in the worker’s career, suggesting the impact may actually rise

with experience.26

In a different set of estimates using data on a sample of workers for the United States,

Hanushek&Zhang (2009) provide estimates of returns (f) of 20%per standard deviation.One

distinguishing feature of these estimates is that they come from a sample of workers throughout

the career, as opposed to the prior estimates that all come from early-career earnings.

Using yet another methodology that relies on international test scores and immigrants

into the United States, Hanushek & Woessmann (2009) obtain an estimate of 14% per

standard deviation. These estimates come from a difference-in-differences formulation

based on whether the immigrant was educated in the home country or in the United States.

They find that skills measured by international math and science tests from each immi-

grant’s home country are significant in explaining earnings within the United States.

Finally, Chetty et al. (2011a) look at how kindergarten test scores affect earnings at

age 25–27 and find an increase of 18% per standard deviation. These estimates do not

control for any intervening school attainment differences but do control for a rich set of

parental characteristics.

The finding that moving one standard deviation in cognitive skills yields 10%–20%

higher income may sound small, but these increments apply throughout the lifetime. In

2010, the average present value of income for full-time, full-year workers ages 25–70 is

$1.16 million.27 Thus one-standard-deviation higher performance even at a low return of

13% per standard deviation amounts to over $150,000.

Table 2 Estimates of the value of cognitive skills from

Mincer earnings functions

Study Earnings coefficient (f)

Mulligan (1999) 0.11

Murnane et al. (2000) 0.10–0.15

Lazear (2003) 0.12

Hanushek & Zhang (2009) 0.20

Hanushek &Woessmann (2009) 0.14

Chetty et al. (2011a) 0.18

Table taken from Hanushek (2011).

25It is convenient to convert test scores into measures of the distribution of achievement across the population. A

separate review of the normalized impact of measured cognitive skills on earnings by Bowles et al. (2001) finds that

the mean estimate is only 0.07, or slightly over half of the specific studies here. More details on the individual studies

discussed here can be found in Hanushek (2011).

26These estimates are derived from observations at a point in time. Over the past few decades, the returns to skill

have risen. If these trends continue, the estimates may understate the lifetime value of skills to individuals. On the

other hand, the trends themselves could move in the opposite direction (for an indication of the competing forces

over a long period, see Goldin & Katz 2008).

27Calculations use average income by age for all full-time, full-year workers in the labor force in the first quarter of

2010. It is assumed that incomes rise 1% per year because of overall productivity improvements in the economy

and that future incomes are discounted at 3%.
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This approach will understate the full impact of achievement to the extent that higher

achievement leads to higher levels of schooling, but that is generally not considered.28 Thus

these estimates can be considered lower bounds on the earnings impacts of higher achievement.

6.2. Economic Value of Increased Teacher Quality

The parameter estimates above provide the building blocks for assessing the implication

of differences in teacher quality for lifetime income. Specifically, we can combine informa-

tion about the distribution of teacher effectiveness and the labor market impact of higher

achievement to estimate the economic impact of a given change in teacher value-added

to achievement.

First, we use evidence on the distribution of teacher effectiveness to determine the

magnitude of a one-standard-deviation difference in teacher quality, which constitutes a

difference that is well within the range of the sample. Table 1 provides a set of estimates

based on within-school variations, but for this assessment we want the total variation that

includes any between-school variation. Because of difficulties in identifying the between-

school variance in quality, this analysis considers two magnitudes of total variance in

teacher quality (sT): a lower estimate of 0.2 standard deviations and a larger estimate of

0.3 standard deviations. Thus a teacher who is one standard deviation above the mean to

the distribution of teachers in terms of quality (i.e., roughly comparing the 84th-percentile

teacher to the 50th-percentile teacher) is estimated to produce marginal learning gains of

0.2–0.3 standard deviations of student achievement above the average teacher.29

The implication for earnings depends on the persistence of this learning into the future

and how this increased learning in any given year carries through into the labor market

(i.e., the persistence discussed above). The baseline calculations presume that 70% of

the added learning persists into the future, i.e., that y in Equation 1 is 0.3. As a result

of the imprecision of prior estimates, however, the impact of depreciation that is twice

as large (i.e., y ¼ 0.6) is also investigated.

It is now possible to calculate the value of an above-average teacher in terms of effec-

tiveness. As a baseline case, consider the effect of having a teacher who is 0.5 standard

deviations above average in the teacher-effectiveness distribution (i.e., at the 69th per-

centile) as opposed to a teacher at the mean of the distribution. She would, according to

the above estimates, annually produce a 0.1-standard-deviations average improvement in

cognitive skills of her students (assuming that the standard deviation of teacher effective-

ness in units of student achievement is 0.2 standard deviations) above what would have

been produced by the mean teacher.

Combining the improvement in scores for an individual with a conservative estimate of

an impact on future individual earnings of 13% per standard deviation of achievement

(from Table 2) and y ¼ 0.3, we obtain a present value of $10,600 over a lifetime of work

for the average worker.

But this is not yet the full impact of the above-average teacher. The impact on one

student is replicated across all the other students in the class. Thus the calculation of the

28Murnane et al. (2000) present an exception for tracing through the indirect effects (see also the discussion of

the form of estimation in Hanushek & Zhang 2009).

29In terms of the student achievement distribution, this would move a student from the 50th percentile to the 58th to

62nd percentile (depending on the variation in teacher quality).
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impact of a teacher depends directly on class size, and the full annual economic value of

teachers at different points in the distribution can be found simply by multiplying the

individual student impact times the class size. Figure 1 (see color insert) displays the impact

of different-quality teachers according to class sizes at varying percentiles of the distribu-

tion. A teacher who is at the 60th percentile (0.25 standard deviations above average)

raises individual earnings by $5,292, and this translates into a present value of $105,830

for a class size of 20 students. A teacher who is one standard deviation above the mean

(84th percentile) produces over $400,000 in added earnings for her class of 20.30

The first thing to note is that this is an annual increment by the teacher. Any teacher

who stays at the given level of performance produces such an amount each year.

Secondly, as seen in the bottom half of Figure 1, a below-average teacher leads to a

similar decrease in lifetime earnings.31 Thus, having an effective teacher followed by an

equally ineffective teacher will cancel out the gains.

The precise marginal economic value depends crucially on the three parameters of

the teacher distribution and of how achievement evolves over time and affects earnings:

sT ¼ 0.2, f ¼ 0.13, and y ¼ 0.3. The impact of the different parameters is straight-

forward. A lower depreciation rate (higher persistence of achievement), a wider teacher-

effectiveness distribution, and a larger labor market payoff to skill lead to a larger

economic value of teacher effectiveness. Additionally, a return to skill of f ¼ 0.13 most

closely mirrors the labor market estimates for young workers and for time periods in the

past when the demand for skill was less. More recent estimates and consideration of

the full age range of workers yield larger estimates, suggesting that f ¼ 0.2 is a plausible

upper bound on the estimates. The baseline estimates do use a depreciation rate of 0.3,

whereas other studies described above suggest a larger depreciation, particularly of

30Chetty et al. (2011a), extrapolating from their data on early career earnings, estimate the impact of a high-quality

teacher at about $214,000 per class of 20 for a teacher one standard deviation above the mean. This is very close to

the lower bound estimate in Table 3.

31The decrease is slightly different because the estimates come from Mincer earnings functions, which relate the

logarithm of earnings to the level of cognitive skills and thus to a slight different percentage change when evaluated

at a different place in the distribution.

ECONOMIC GROWTH

An alternative estimate of the value of effective teachers focuses on the impact of student performance on

economic growth. Recent analysis has demonstrated a close tie between international assessments of

achievement and a country’s economic growth rate (Hanushek & Woessmann 2008). Hanushek (2011)

links teacher quality to potential implications for performance on international tests and, through that

linkage, to effects on the aggregate US economy. Specifically, consider eliminating the bottom end of the

teacher-quality distribution and replacing these teachers with average teachers. Using the prior bound on

variations in teacher effectiveness as measured by achievement growth—specifically, 0.2–0.3 standard

deviations—it is possible to see the impact of the least-effective teachers. Eliminating the least effective

5%–8% of teachers would bring student achievement up by 0.4 standard deviations or higher on the

international tests. Using prior estimates of the achievement-growth linkage, Hanushek & Woessmann

(2011) suggest that 0.4 standard deviations in gains could translate into a present value of added GDP of

some $70 trillion (compared with a US GDP of $15 trillion in 2011).
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achievement gains induced by the teacher. We thus also look at y ¼ 0.6, or a depreciation

rate that is twice as large.

Table 3 presents alternative estimates of marginal impacts evaluated at one point in the

teacher distribution—one standard deviation above the mean, or the 84th percentile. Even

at the lower bound in column 1 of the table, defined by the previous quality and earnings

parameters (sT ¼ 0.2 and f ¼ 0.13) but higher depreciation (y ¼ 0.6), a good teacher with

a class of 15 annually produces $182,000 more in present value than the average teacher.

The marginal annual economic value of a good teacher (compared with the average)

evaluated at a given class size—say 20 students per class—does make a large difference in

the estimated impact. The annual economic value with a class size of 20 ranges from a

quarter of a million dollars to a million dollars at the top of the range for the three param-

eters together. (The final column of Table 3 is an upper bound on estimates based on

current empirical work.)

Although the difference in estimates across the parameters is large, the more striking

feature of the table is the magnitude of the lower bound. A teacher in the top 15% with a

class of 20 or more students yields at least $240,000 in economic surplus each and every

year compared with an average teacher.

A host of unknown factors—including the compensatory behavior of parents and

schools, the cumulative nature of skills, the specific attributes valued in the labor market,

and the nature of peer-classroom interactions—come into play in determining the long-

run impact of specific teachers. But even twice the depreciation of achievement that was

used in the baseline yields very large estimates of the value of an effective teacher—say,

$150,000 per year present value for a 75th-percentile teacher with a class of 20 students.

A final caveat is that none of the prior estimates in Table 3 addresses any possible offset

from direct class-size increases that would result if teachers were simply laid off instead

of being replaced by average teachers (see the next section, however). The magnitude of

any such class size effects has been controversial and does not readily permit explicit

analysis (see, e.g., Hanushek 1999a, Krueger 1999, Mishel & Rothstein 2002). At large

Table 3 Sensitivity of demand based on earnings to key parameters (marginal annual economic value of a teacher one

standard deviation above the mean)

u ¼ 0.6 u ¼ 0.3

sT ¼ 0.2 sT ¼ 0.3 sT ¼ 0.2 sT ¼ 0.3

Class size f ¼ 0.13 f ¼ 0.2 f ¼ 0.13 f ¼ 0.2 f ¼ 0.13 f ¼ 0.2 f ¼ 0.13 f ¼ 0.2

5 $60,652 $93,573 $91,215 $140,923 $106,556 $164,741 $160,566 $248,858

10 $121,303 $187,145 $182,430 $281,847 $213,113 $329,482 $321,132 $497,715

15 $181,955 $280,718 $273,645 $422,770 $319,669 $494,223 $481,698 $746,573

20 $242,607 $374,290 $364,860 $563,693 $426,225 $658,964 $642,264 $995,431

25 $303,259 $467,863 $456,075 $704,617 $532,781 $823,706 $802,831 $1,244,288

30 $363,910 $561,435 $547,290 $845,540 $639,338 $988,447 $963,397 $1,493,146

y is the depreciation rate, sT is the standard deviation of teacher quality, and f is the labor market return to one-standard-deviation

higher achievement.
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class sizes, the estimates might be interpreted as an upper bound.32 Of course, that would

also imply that those at lower class sizes are lower bounds.

These estimates of the economic impact of teachers—which come from chaining

together parameters estimated across different studies—are validated by the direct esti-

mates of Chetty et al. (2011a). They consider how the least-effective teachers affect the

earnings of students, and they also find present values of teacher impacts for the bottom

5% of teachers that are greater than $250,000 per class. Although it is difficult to compare

their estimates and those here directly because of varying discount rates, class sizes, and the

like, it is clear that they confirm the orders of magnitude described here.

6.3. LIFO (Last In, First Out)

Many union contracts for teachers specify that any layoffs should be done according to

inverse seniority rules. The least-senior teachers must be dismissed before any tenured

teachers are eliminated. But, as noted above, there is little relationship between experience

and effectiveness in the classroom, except perhaps for teachers in their first few years. A

layoff policy based on seniority thus would be expected to bear little relationship to the

impact on student achievement. Until recently, few teachers were laid off, so the rules were

not binding. However, the fiscal distress of states and localities in the aftermath of the

2008 recession led to some layoffs of teachers. Recent analyses have linked information

about teacher value-added to layoff policies, and they indicate that the impact of reduc-

tions depends importantly on how the layoffs are implemented (Glazerman et al. 2010,

Boyd et al. 2011, Goldhaber & Theobald 2011).

Goldhaber & Theobald (2011) evaluate the pattern of layoff notices sent to teachers

in Washington State over two school years (2008–2009 and 2009–2010).33 They found

that, although teachers with master’s degrees and some specialties had slightly lower

probabilities of getting a notice, the overwhelmingly most important factor in the layoff

decision is simply seniority. Because the less-senior teachers have lower salaries, to obtain

the same fiscal savings, districts would have to lay off 20% fewer teachers if those laid

off fell at the district average salary. More interesting, however, is the impact of layoffs on

student outcomes that is estimated using the value-added of teachers.

Their analysis incorporates teacher-effectiveness measures in the consideration of

who gets layoff notices (for the subset of teachers for which value-added estimation is

possible). The teacher value-added measure is never close to being a statistically signifi-

cant determinant of receiving a layoff notice. Moreover, the differential in average effec-

tiveness (value-added) between teachers separated on the basis of effectiveness as opposed

to the largely seniority basis employed in the notices is 0.2 standard deviations of

student achievement.

Boyd et al. (2011) pursue a similar simulation in trying to investigate the implications

of a hypothetical 5% reduction in teacher salaries for New York City. Their estimates are

similar but somewhat larger than those in Goldhaber & Theobald (2011). In their analysis,

an average teacher who is laid off under a value-added system is 26% of one standard

32Among the various class-size estimates, those in Krueger (1999) are among the largest, suggesting that a decrease

in class size of eight students for four years might yield an achievement gain of 0.2 standard deviations.

33Note that, because of advance-notice provisions in law and contracts, school districts send out many more layoff

notices than they ultimately exercise.

LIFO (last in, first

out): in education,

refers to the common
practice of laying off

the teachers with least

seniority (i.e., the

last in) if reductions
are necessary
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deviation in student achievement less effective than the typical seniority-based layoff. As

they note, this is more than twice the size of the “first-year teaching” effect.

Part of the importance of these findings, however, depends on decision makers being

able to identify differences in teacher effectiveness, as only a minority of teachers can

participate in formal value-added analysis. For example, in the evaluation system used

in Washington, DC, less than one-fifth of the teachers were assessed by value-added

measures, implying that other elements of evaluation must necessarily be incorporated.

Several studies have related estimates of teacher value-added to the evaluations of

principals (e.g., Murnane 1975, Armor et al. 1976, Jacob & Lefgren 2008). The recent

study by Jacob & Lefgren (2008) finds that principals can do quite well at identifying

which teachers are in the extreme of the distribution, although they do worse at differen-

tiating teachers in the middle of the distribution. Identifying the extremes, however, is

probably most relevant for teacher personnel and evaluation systems, particularly as

related to any layoff policies. Therefore, greater flexibility in layoff decisions could lead

to substantial changes in the distribution of teacher quality following a reduction in the

size of the teaching force.

Of course, major changes in the terms of the standard teacher contract could have

implications (positive or negative) for the teacher labor market. They could affect not only

the career decisions of existing teachers, but also the supply of potential teachers into the

profession. The first-order effects on achievement from selective decision making about

layoffs are, nonetheless, large.

7. SOME CONCLUDING THOUGHTS

This discussion of course falls far short of describing all the relevant policy issues related to

teacher quality. Experience on the impact of employing value-added measures in personnel

decisions, contracts, and overall policy is currently quite limited, implying that some of the

gains (and losses) from changed policies remain speculative at this time. At the same time,

policies are moving rapidly, suggesting that they will soon be subject to empirical analysis.

A big issue in all the policy considerations is simply what drives the observed differences

in teacher quality. Without knowing what leads to better or worse performance, it is hard

to know what should be done to train teachers. It is hard to know how to hire teachers

who have no observed performance. And it is hard to decide on such issues as mentoring

new teachers or providing professional development.

Clearly research is continuing to fill in these missing elements. At the same time, it

seems sensible to develop systems that recognize the large differences and act on them

rather than delaying decisions until all the answers are available.

SUMMARY POINTS

1. The differences in the effectiveness of teachers are not captured by common

observable characteristics such as teacher experience or teacher degrees.

2. The identification of teacher effectiveness on the basis of teacher value-added has

shown that teacher quality varies dramatically, even within individual schools.
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Figure 1

Impact of different-quality teachers according to class sizes compared to an average teacher.
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