Education, Skills, and Technical Change

Implications for Future US GDP Growth

Edited by
Charles R. Hulten and Valerie A. Ramey
Contents

Prefatory Note ix

Introduction 1
Charles R. Hulten and Valerie A. Ramey

I. The Macroeconomic Link between Education and Real GDP Growth

1. Educational Attainment and the Revival of US Economic Growth 23
Dale W. Jorgenson, Mun S. Ho, and Jon D. Samuels

2. The Outlook for US Labor-Quality Growth 61
Canyon Bosler, Mary C. Daly, John G. Fernald, and Bart Hobijn
Comment on Chapters 1 and 2: Douglas W. Elmendorf

3. The Importance of Education and Skill Development for Economic Growth in the Information Era 115
Charles R. Hulten

II. Jobs and Skills Requirements

4. Underemployment in the Early Careers of College Graduates following the Great Recession 149
Jaison R. Abel and Richard Deitz
5. The Requirements of Jobs: Evidence from a Nationally Representative Survey
Maury Gittleman, Kristen Monaco, and Nicole Nestoriak

183

III. Skills, Inequality, and Polarization

6. Noncognitive Skills as Human Capital
Shelly Lundberg
Comment: David J. Deming

219

7. Wage Inequality and Cognitive Skills: Reopening the Debate
Stijn Broecke, Glenda Quintini, and Marieke Vandeweyer
Comment: Frank Levy

251

8. Education and the Growth-Equity Trade-Off
Eric A. Hanushek

293

9. Recent Flattening in the Higher Education Wage Premium: Polarization, Skill Downgrading, or Both?
Robert G. Valletta
Comment: David Autor

313

IV. The Supply of Skills

10. Accounting for the Rise in College Tuition
Grey Gordon and Aaron Hedlund
Comment: Sandy Baum

357

11. Online Postsecondary Education and Labor Productivity
Caroline M. Hoxby
Comment: Nora Gordon

401

Gordon H. Hanson and Matthew J. Slaughter
Comment: John Bound

465

Contributors

501

Author Index

505

Subject Index

513
Considerable discussion surrounds the interrelationship of economic growth and the distribution of income. A common consideration generally underlying discussions about both growth and the character of the income distribution is the human capital of the population. But it has been unclear how human capital and, particularly, policies designed to improve human capital might affect growth-equity outcomes. The discussion here builds on recent analyses that focus on the interplay of cognitive skills with long-run growth and with individual earnings. This new focus provides a different perspective on how human capital development fits into the aggregate picture and suggests that the impact of various human capital policies is likely to be heterogeneous with some policies leading to growth-equity trade-offs and others to growth-equity complementarities.

Much of the growth-equity discussion has been motivated by examination of the Kuznets curve, which relates income levels of a country to an inverted U-shaped curve of income inequality (Kuznets 1955). Recent work in this heavily traveled area has gone in a variety of directions. Much of the related work has stayed at the aggregate level, focusing on variations across countries or the impact of various redistribution policies (e.g., Ostry, Berg, and Tsangarides 2014; Brueckner, Dabla Norris, and Gradstein 2015). Other work has gone into detail on various subparts such as the relationship between human capital and income inequality (e.g., Castelló-Climent and...
Doménech 2008, 2014).1 Most, however, has only indirectly provided guidance on specific policy choices.

This chapter does not attempt to reconcile these different perspectives. Instead, the discussion focuses on recent research that links growth and individual incomes through the importance of cognitive skills. Historically, this linkage has not been the focus, even though both growth and income determination have been closely linked to ideas of human capital. The ubiquitous measurement of human capital by school attainment provides a biased view of the role of skills and leads to policy conclusions that are not suggested by a skills formulation and measurement focus. Not only are growth and individual incomes closely related to differential cognitive skills as measured by standardized achievement tests, but also this direct measure of human capital is closely aligned with many current policy discussions.

The next section describes basic results of empirical growth models. This is followed by conclusions about individual earnings determination. These discussions, which differ from many of the common developments, form the basis for considering the relationship between education policies and growth and equity objectives. With this background, it is possible to present illustrative schooling policies that produce growth-equity complementarities and that produce growth-equity trade-offs.

8.1 Long-Run Growth

Modern growth theory has investigated a variety of explanations for what fundamentally determines economic growth (Hanushek and Woessmann 2008). The focus has been different underlying models of how resources and institutions affect growth. And, in the empirical analysis there has been a broad attempt to discover how various factors from politics to geography enter into growth differences across countries. Important for the purposes of this discussion, virtually all developments—both theoretical and empirical—maintain a key role for the skills of workers—that is, for human capital.

In the late 1980s and early 1990s, macroeconomists launched extensive efforts to explain differences in growth rates around the world. A variety of different issues have consumed much of the theoretical growth analysis that developed with the resurgence of growth analysis. At the top of the list is whether growth should be modeled in terms of the level of income or in terms of growth rates of income. The former is typically thought of as neoclassical growth models (e.g., Mankiw, Romer, and Weil 1992), while the latter is generally identified as endogenous growth models (e.g., Lucas 1988; Romer 1990).

The two different perspectives have significantly different implications for

1. For a broad review of the theoretical history and modeling of growth, human capital, and income inequality, see Galor (2011).
Education and the Growth-Equity Trade-Off

the long-run growth and income of an economy. In terms of human capital, the focus of this discussion, an increase in human capital would raise the level of income but would not change the steady-state rate of growth in the neoclassical model. But, increased human capital in the endogenous growth model will lead to increases in the long-run growth rate. The theoretical distinctions have received a substantial amount of theoretical attention, although relatively little empirical work has attempted to provide evidence on the specific form (see Benhabib and Spiegel 1994; Hanushek and Woessmann 2008; Holmes 2013).

Both views can be considered in a stylized form of an empirical growth model:

\[
growth = \alpha_1 \text{human capital} + \alpha_2 \text{other factors} + \epsilon.
\]

A country’s growth rate is described as a function of workers’ skills along with other systemic factors including economic institutions, initial levels of income, and technology. As noted, there have been distinct differences in how skills are seen as affecting the economy, but little of the broad theoretical work has focused on the measurement of relevant skills. Measurement issues are crucial to any empirical considerations of human capital and growth, yet surprisingly, human capital measurement has also received relatively little attention in the associated empirical analysis.

Owing to the ready availability of data (and to the standard labor economics perspective below), the quantity of schooling became virtually synonymous with human capital, so much so that the choice in empirical work is seldom explicitly considered. Thus, when growth modeling required a measure of human capital, measures of school attainment were seldom questioned. The early data construction of Barro and Lee (1993) provided the necessary data on school attainment supporting international growth work.2 Thus, equation (1) could be estimated by substituting school attainment, \(S \), for human capital and estimating the growth relationship directly.

While using school attainment to measure human capital generally arouses little attention, this presents huge difficulties in an international setting. In comparing human capital across countries, it is impossible to believe that schools in Singapore yield, on average, the same learning per year as those in Brazil.

This formulation of the growth model also presumes schooling is the only source of human capital and skills. Yet, the very large literature on education production functions (Hanushek 2002) focuses both on differences in school quality and on other inputs including families, health, and abilities of a general form such as

2. There were some concerns about accuracy of the data series, leading to alternative developments (Cohen and Soto 2007) and to further refinements by Barro and Lee (2010), but the availability of this as a suitable measure of human capital has seemed clear over the past two decades.
human capital = β_1schools + β_2families + β_3ability + β_4health + β_5other factors + ν

Unless families, health, and school quality are unrelated to school attainment, empirical growth modeling that simply substitutes school attainment for human capital in equation (1) will yield biased estimates of how human capital affects growth. Indeed, this observation is consistent with the early findings about the sensitivity of empirical growth models to model specification and the range of alternative factors considered (Levine and Renelt 1992).

An alternative approach is to measure human capital directly. Consistent with the educational production function literature and with the educational accountability movement, one can use standardized achievement tests of students as a direct measure of the relevant skills of individuals. This proves to be a very productive way to proceed in empirical growth models.

Cross-country skill differences can be constructed from international assessments of math and science (see the description in Hanushek and Woessmann [2011a]). These assessments, conducted over the past half century, provide a common metric for measuring cognitive skill differences across countries. This aggregate measure of a country's skills, labeled the knowledge capital in order to distinguish it from school attainment, provides for testing directly the fundamental role of human capital in growth, as found in equation (1). This approach to modeling growth as a function of international assessments of skill differences was introduced in Hanushek and Kimko (2000) and has been extended in Hanushek and Woessmann (2007, 2015a).

The fundamental idea is that skills as measured by achievement, A, can be used as a direct indicator of the knowledge capital of a country in equation (1) and, as described in equation (2), can be thought of as combining the skills of individuals from different sources in different countries.

The impact of both school attainment and knowledge capital can be seen in the basic long-run growth models displayed in table 8.1. The table presents simple models of long-run growth over the period 1960–2000 for the set of fifty countries with required data on growth, school attainment, and achievement. Growth is measured by increases in real gross domestic product (GDP) per capita. The inclusion of initial income levels for countries is
Education and the Growth-Equity Trade-Off

quite standard in this literature, permitting the convergence of incomes. In simplest terms, it reflects the fact that countries starting behind can grow rapidly simply by copying the existing technologies in other countries while more advanced countries must develop new technologies (see Hanushek and Woessmann 2012).

The estimates in column (1), which mirror the most common historical approach, rely just on years of schooling to measure human capital and show a significant relationship between school attainment and growth. It explains one-quarter of the international variation in growth rates. Much of the existing empirical growth analysis was designed to go beyond this and to explain a portion of the remaining variation in growth, generally by adding additional measures of country differences including institutions, international trade, political stability, and the like.

The second column substitutes knowledge capital, the direct measure of skills derived from international math and science tests for school attainment, for years of schooling. Not only is there a significant relationship of knowledge capital with growth but also this simple model now explains three-quarters of the variance in growth rates. The final column includes both measures of human capital, that is, knowledge capital and school attainment. Importantly, once direct assessments of skills are included, years of school is not significantly related to growth, and the coefficient on school attainment is very close to zero.

These models, of course, do not say that schooling is worthless. They do say, however, that it is the portion of schooling directly related to skills that has a significant and consistent impact on cross-country differences in growth. The importance of skills and conversely the unimportance of just extending schooling that does not produce higher levels of skills has a direct bearing on human capital policies for both developed and developing countries.

| Table 8.1 Alternative estimates of long-run growth models with knowledge capital |
|---|-------|-------|-------|
| | (1) | (2) | (3) |
| Cognitive skills (A) | 2.015 | 1.980 |
| | (10.68) | (9.12) | |
| Years of schooling 1960 (S) | 0.369 | 0.026 |
| | (3.23) | (0.34) | |
| GDP per capita 1960 | −0.379| −0.287| −0.302|
| | (4.24) | (9.15) | (5.54)|
| No. of countries | 50 | 50 | 50 |
| \(R^2 \) (adj.) | 0.252 | 0.733 | 0.728 |

Source: Hanushek and Woessmann (2015a).

Notes: Dependent variable: average annual growth rate in GDP per capita, 1960–2000. Regressions include a constant; \(t \)-statistics in parentheses.
Two aspects of these estimates are relevant for policy consideration. First, it is the case that countries with higher skill levels also invest more in years of schooling. This holds for both developed and developing countries. Second, and very important for thinking about these results, education is a cumulative process, and later learning always builds on earlier learning. James Heckman and his colleagues describe it as dynamic complementarities, such that “skill begets skill” (Cunha et al. 2006; Cunha and Heckman 2007). The idea is very simple—schools not only build upon early learning, but the path of output follows a multiplicative function.

The estimated growth impacts of knowledge capital, scaled in standard deviations of achievement in table 8.1, are very large. The estimates imply that a one standard deviation difference in performance equates to 2 percent per year in average annual growth of GDP per capita.

Finally, estimating models in this form with a convergence term permits some assessment of the differences between the endogenous and neoclassical growth models, although full discussion is beyond this chapter. In the neoclassical model, the cumulative increases in GDP that emanate from increased human capital are approximately one-third less over a seventy-five-year period than those from the endogenous growth model, but they are still very substantial (see Hanushek and Woessmann 2011b). It remains difficult, however, to distinguish between the two models with existing data because insufficient data about changes in knowledge capital over time are available and because the impacts on growth are seen only in the distant future (see Holmes 2013).

A major concern with empirical growth modeling is that the estimated relationships do not measure causal influences but instead reflect reverse causation, omitted variables, cultural differences, and the like. This concern has been central to the interpretation of much of the prior work in empirical growth analysis, and indeed some have rejected the entire body of work on the basis of concerns about causation. Fully considering these issues goes beyond what can be presented here (see Hanushek and Woessmann 2012, 2015a), but it is possible to give some sense of the issues and their resolution.

An obvious issue is that countries that grow faster have added resources that can be invested in schools, implying that growth could cause higher scores. However, the lack of relationship across countries in the amount spent on schools and the observed test scores that has been generally found provides evidence against this (Hanushek and Woessmann 2011a). Moreover, a variety of sensitivity analyses show the stability of these results when the estimated models come from varying country and time samples, varying specific measures of cognitive skills, and alternative other factors that might affect growth (Hanushek and Woessmann 2012).

It is possible to address the main causation concerns with a series of alternative analyses, even if none of the tests is completely conclusive. To rule out simple reverse causation, Hanushek and Woessmann 2012 estimate
the effect of scores on tests conducted until the early 1980s on economic growth in 1980–2000, finding an even larger effect of knowledge capital in the later period. Additional analysis considers the earnings of immigrants to the United States and cognitive skills in order to address the idea that cognitive skills are unimportant and that is just correlated with other causal factors. This analysis finds that the international test scores for their home country significantly explain US earnings, but only for those educated in their home country and not for those educated in the United States. This finding addresses simple issues of cultural differences because immigrants from the same country (but educated differently) are directly compared. By observing impacts within a single labor market, it also addresses possible concerns that countries with well-functioning economies also have good schools without the good schools driving growth.

Another analysis shows that changes in test scores over time are systematically related to changes in growth rates over time. In other words, it implicitly holds the country constant while looking at whether changing scores have the impact on changing growth rates that is predicted in table 8.1. Finally, it is possible to exploit institutional features of school systems as instrumental variables for test performance. By employing only the variation in test outcomes emanating from country differences because of the use of central exams, decentralized decision-making, and privately operated schools, this instrumental variable approach both supports a causal interpretation and suggests that schooling can be a policy instrument contributing to economic outcomes.

While concerns about issues of causation still remain, the tests that have been done provide a prima facie case that improving cognitive skills and the knowledge capital of a country can be expected to improve economic growth. Each of the causation tests points to the plausibility of a causal interpretation of the basic models. But, even if the true causal impact of cognitive skills is less than suggested in table 8.1, the overall finding of the importance of such skills is unlikely to be overturned.

With this foundation of the relationship between knowledge capital and growth, it is possible to turn to issues affecting the distribution of income.

8.2 Individual Earnings

The overall distribution of income depends on a variety of factors including labor force participation, taxes, subsidies, international competition, firm ownership, and the like. Nonetheless, individual earnings will have a substantial influence on the ultimate distribution of income.

Importantly, cognitive skills of individuals have a clear and strong relationship to individual earnings and incomes. There has been a long history of investigating the determination of incomes and the role of human capital. While the relationship of skills to productivity of individuals dates back to
Sir William Petty (Petty [1676] 1899) and Adam Smith (Smith [1776] 2010), the modern consideration of earnings determination is dominated by Jacob Mincer (Mincer 1970, 1974).

With a simple investment model, Mincer related school attainment (years of schooling) to individual earnings. Perhaps no other empirical relationship has had more influence than the Mincer earnings function. Over time this structure has been almost universally applied, and virtually any analysis considering individual variations in human capital measures skill differences primarily by years of schooling. Not only is there the conceptual support for this from Mincer’s work and from subsequent developments, but also it was expedient because measures of years of schooling are ubiquitous in census and survey data.

Unfortunately, characterizing the human capital of individuals simply by years of schooling ignores other elements of human capital determination and also eliminates most of the relevant policy deliberations about investments in human capital. As noted, there is extensive evidence from the educational production function literature that highlights the central role of families, peers, and neighborhoods—in addition to schools—on the achievement and skills of individuals (Hanushek 2002). As with growth modeling, this suggests that the typical estimates of the impact of human capital on earnings from a Mincer earnings function is actually the combined effect of added schooling and of the correlated influence of these other factors. Additionally, when any policy discussion turns to the influence of schools, the interest is more focused on issues of school quality than school quantity. While there is some discussion about school completion and about college access, most of the policy concerns are focused on aspects of school quality, something that is generally neglected in the analysis of individual earnings.

An alternative formulation that acknowledges these shortcomings in standard analyses of earnings determination is again to focus on individual measures of cognitive achievement as a direct measure of human capital. Such analysis has not been very common because of the general lack of measures of achievement or skills in surveys that have information about earnings and labor market activities. Recent data, however, are particularly apropos to understanding how skills relate to individual earnings.

The Programme for the International Assessment of Adult Competencies (PIAAC) provides labor market information and assessments of cognitive skills for a random sample of the population age sixteen to sixty-five in thirty-two separate countries (Organisation for Economic Co-operation and

5. The standard Mincer earnings function has log earnings as a linear function of years of schooling and a quadratic in potential experience (i.e., in years since completing schooling). It may then also include other specific factors influencing earnings.

Development [OECD] 2016). This survey of individuals collected demographic background along with labor market history. Sampled individuals also took tests in numeracy, literacy, and problem solving in technology-rich environments. These data are particularly useful for understanding the returns to skills. First, they provide information on earnings during mid- and later-life-cycle periods, when the value of skills becomes most observable. Second, by observing variations in returns across countries, it is possible to get suggestive insights into underlying causes of skill differences (Hanushek, Schwerdt, Wiederhold, and Woessmann 2017).

Estimates of the earnings-skills gradient, shown in figure 8.1, indicate that the United States has close to the highest return to skills across the thirty-two countries. These estimates for numeracy skills indicate that a person one standard deviation above the mean numeracy score will, on average, seven times what a person scoring one standard deviation below the mean earns.

Fig. 8.1 Returns to numeracy skills

*Note: Coefficient estimates on numeracy score (standardized to std. dev. 1 within each country) in a regression of log gross hourly wage on numeracy, gender, and a quadratic polynomial in age, sample of full-time employees age thirty-five to fifty-four.

*Jakarta only. Data source: PIAAC 2016.

7. Most of the available evidence on returns to skills comes from US panel survey information where, unfortunately, the observations occur early in the work life. But early career returns provide underestimates of the full value of skills (Hanushek et al. 2015), perhaps because employers are still learning about individual skills (Altonji and Pierret 2001).
earn 28 percent more per year throughout the working life. But this estimate also shows that low achievement is harshly dealt with by the labor market—because somebody at the 16th percentile of the achievement distribution (one standard deviation below the mean) will earn 28 percent below the average achieving worker.

These calculations underscore a basic fact: upgrading the skills of workers makes them more productive, which in turn raises their own incomes and improves overall growth of GDP. Pulling low achievers toward the mean implies lowering the variance in earnings while increasing the rate of growth of the economy—a point highlighted below.

There is, however, one additional aspect of the returns to individual skills that is relevant for consideration of growth-equity choices. Consistent with the arguments of Nelson and Phelps (1966), Welch (1970), and Schultz (1975), returns to skills appear to be higher when there is more economic change. Specifically, Hanushek, Schwerdt, Wiederhold, and Woessmann (2017) show that differences in returns to skills across countries are correlated with economic growth rates. In other words, growth and skills are complementary—higher skills imply greater growth that in turn implies greater returns to those higher skills.

8.3 Illustrative Human Capital Policies and Growth-Equity Outcomes

Most discussions of the human capital impact on both growth and distribution have looked exclusively at school attainment, and this has led to distortions of the policy discussions. Essentially discussions of alternative public policies have been inappropriately separated from the discussions of possible growth-equity trade-offs and growth-equity complementarities.

The evidence on growth and on individual earnings suggests that policies that improve learning while reducing the variance in achievement and skills will promote higher and more equitable incomes. Perhaps the most obvious program in this category involves preschool programs, although other ideas surrounding lifelong learning are also relevant.

8.3.1 Early Childhood Education

There is a broad consensus that the United States should expand its current preschool programs, particularly for disadvantaged students. From the demand side, there is little question that there are significant variations in the preparation of children for schooling and that these variations are systematically related to families’ socioeconomic status. On the supply side, we have credible evidence that quality preschool can significantly improve achievement and life outcomes of disadvantaged students.

Evidence from a wide variety of sources indicates that disadvantaged students have less education in the home before entry into school. The Coleman Report, the massive governmental report mandated by the 1964 Civil Rights
Act, first documented early achievement differences by family background (Coleman et al. 1966). These differences, documented in 1965, focused on racial differences. Another important investigation looked at the vocabulary of children and found dramatic differences by parents’ socioeconomic status (Hart and Risley 1995). Both the amount and quality of parent-child interactions differed significantly, leading to large differences in vocabularies that directly reflected parental background. More recently, data from the Early Childhood Longitudinal Study documents the continuing early achievement deficits that accompany family background. Fryer and Levitt (2004) identify gaps in scores by socioeconomic status, while Reardon (2008) suggests that these gaps may have widened over many years.

How important are these initial gaps? Considerably so: while there is some disagreement about whether they shrink, expand, or hold constant over time in school, there is no evidence that they actually disappear.8

The final demand-side element for preschool is the significant impact on individuals’ future incomes. The most direct relationship between early test performance and earnings is found in Chetty et al. (2011), which traces kindergarten performance directly to college completion and early career earnings. While recent public and media focus has largely concentrated on the top 1 percent of earners, such results point to the enormous implications of skill gaps within the remaining 99 percent of earners.9

The importance of early childhood learning in the overall growth-equity discussions is clear: the evidence suggests that high-quality programs tend to enhance the achievement of disadvantaged students—lifting the mean of the achievement distribution while lowering the variance. Thus, if effective, such programs both promote higher growth and more equity.

On the supply side, the existing evaluation literature generally suggests that preschool programs can be effective in raising achievement and other outcomes. Well-publicized studies with strong research designs, based on random assignment of students to programs, suggest high efficacy: the Perry Preschool Project, the Carolina Abecedarian Project, and the Early Training Project provide important evidence in favor of early childhood education (Schweinhart et al. 2005; Witte 2007).10 The experimental evidence has been supplemented by observational studies. Chicago’s Child-Parent Center program (Reynolds et al. 2002), studies on preschool outcomes in Tulsa, Oklahoma (Gormley et al. 2005), and Georgia’s universal pre-K program (Cascio and Schanzenbach 2013), generally indicate a positive impact for disadvantaged children (but no impact for more advantaged kids). Offsetting these results to some extent is the federal Head Start program, which

8. See, for example, the projections of racial gaps in achievement starting with those found in the Coleman Report (Hanushek 2016a).
9. See also the discussion in Autor (2014).
10. A comprehensive review of different pre-K programs and their evaluations can be found in Besharov et al. (2011).
has been extensively evaluated and shows little success. One recent high-quality evaluation, for instance, found that any achievement gains produced by Head Start disappear by third grade. Puma et al. (2012), the first random-assignment evaluation of Head Start, assessed a variety of child outcomes with none showing significant impact by third grade.

The caveat to this discussion is that little is currently known about the characteristics of effective preschool programs. The considerable discussion of various input requirements suggested for preschool programs has not been matched with evidence about the impact of different inputs. Understanding how to structure effective preschool programs and how to price and provide access to them are remaining questions that are central to developing actual policies.

8.3.2 Lifelong Learning

Changing the skill level of youth, while effective in improving both long-run growth and equity according to existing research, does take a long time to have its economic impact (Hanushek and Woessmann 2015a, 2015b). This suggests short- to middle-range economic effects that might be different. Specifically Autor (2014), in summarizing a number of studies, shows how the income distribution has widened in the United States in recent decades and relates this to differential skills. Specifically, more educated workers have been able to adjust to changed demands and have seen their earnings diverge from those of less educated. While the central focus is on differences in school attainment, it is almost certainly true for cognitive skills.

One aspect of this adaptation to change has been the ability of the more skilled to train for different job demands. As noted above, the ability to continually train and adapt is reflected by the higher returns to skills that accompany faster growth (Hanushek, Schwerdt, Wiederhold, and Woessmann 2017). This adjustment to change has led to continual calls for enhancing lifelong learning, particularly by those in jobs subject to more intense competition and by those currently receiving less continual training and upgrading.

If effective, enhanced lifelong learning would tend to make growth and equity more complementary because it is the lower skilled that generally receive less training throughout their career. Moreover, as discussed below, the need for improved career training has been emphasized for workers with vocational training, who generally have more specific skills that are more subject to lessened demand with changes in job demands. For this reason,

11. In practice, Head Start is not a unified program but rather a funding stream with loose regulations on the character of actual programs. As such, Head Start programs display considerable heterogeneity.
12. For discussion from the policy perspective, see Hanushek (2015).
regular calls for support of lifelong learning are more common in the European Union with its more plentiful use of vocational training.

The problem from a policy viewpoint is that ideas about the appropriate policies to support lifelong learning generally fall short of the appeals for expansion. Little empirical knowledge exists about appropriate incentives to individuals or firms that would effectively expand lifelong learning.13

8.3.3 Vocational Education

Of course, not all education policies produce a long-run felicitous growth-equity outcome.14 For example, there are many examples of ineffective policies that fail to yield improved student outcomes. This fact is easiest to see in both cross-country and within-country analyses of the inconsistent relationship between resources to schools and outcomes (see, e.g., Hanushek and Woessmann 2011a; Hanushek 2003).15 Little evidence suggests that just spending more on schools within the current institutional arrangements is likely to lead to much improvement.

More interestingly, there are educational programs that meet their declared goals but that might simultaneously suggest trade-offs between growth and equity. This includes intensive vocational education and programs that skew education toward the elite.

One major educational policy decision countries face is how much to emphasize vocational education, that is, education that is designed to produce more job-related skills, rather than the standard general education program. Vocational education programs, popular in both Europe and many developing countries, aim to ease the school-to-work transition of youth by directly providing skills that industries demand. Attention was particularly focused on these programs following the 2008 recession, in part due to the success of the German economy that is built on its apprenticeship program and intensive vocational education. And, while the United States has largely dismantled its vocational education program, there has been more recent attention to the possibility of reinstating at least part of the system (e.g., Lerman 2009).

Most of the attention has focused on the school-to-work transition. The evidence on the impact of vocational education on labor market entry is somewhat ambiguous because of the selectivity of choice across school

13. In closely related work, governments often have training programs for unemployed adults. These programs are sometimes effective, but it is hard to describe precisely when they are successful or what are the characteristics of successful programs (McCall, Smith, and Wunsch 2016).
14. Much discussion surrounding short-run growth and employment focuses on such things as labor and product market regulations, taxes, and subsidies. In the long run, however, these do not show any relationship with growth (Hanushek and Woessmann 2015a).
15. Strictly speaking, poor education programs may lower growth and widen the income distribution.
types, but there is a general sense that vocational education does in fact make career entry easier (Ryan 2001). However, the impact of vocational education on the growth-equity relationship proves to be more complicated.

In the short run, expanding vocational education programs would, if they get youth into the labor market more quickly, tend to lead to expansion of the economy and to higher incomes at the lower end of the income distribution—a case of an education program that moves toward more growth and more equity.

The long run may, however, be different. Krueger and Kumar (2004) suggest that a significant contributor to the overall lower growth rates in Europe as opposed to the United States may be the reliance on vocational education, particularly in the face of labor market regulations that lead to market distortions. The idea is that firms choose lower-skill technologies when workers have more skill-based training as opposed to general training. The advantage of the United States is that broad general education and limited labor market regulation allows firms to seek better technologies.

From a different perspective, Hanushek, Schwerdt, Woessmann, and Zhang (2017) look at the life-cycle impacts of vocational versus general education. They test the simple hypothesis that individuals with vocational education are less able to adapt to changed technologies and thus their employment opportunities later in life are diminished. For countries with the most intensive vocational education—apprenticeship countries—there is a clear lessening of employment later in the life cycle when compared to those with general education. The lowered employment later in the life cycle is also found in other countries with less intensive vocational education programs, but the decline in employment is not as sharp.

Others have subsequently looked at the same hypothesis with somewhat varying results. Hampf and Woessmann (2017) confirm the major findings using more recent data across a larger number of countries. Forster, Bol, and van de Werfhorst (2016) find the same overall life-cycle pattern across countries but do not find the strong differences by intensity of the vocational system in different countries; they find the pattern to be consistent across a wide range of countries. For Britain, Brunello and Rocco (2017) find employment declines for those with vocational education, but the later declines do not appear to be large enough to offset the initial employment gains.

Taken together, the evidence suggests that movement toward expanded vocational education is unlikely to lead to more rapid long-run growth. Moreover, it does not appear to lead to more equitable outcomes, even if it has a short-run impact of improving the school-to-work transition. These issues are especially important in developing countries where the main focus is on increased growth. To the extent that a country experiences more rapid growth, the economy is going through larger changes—and this is just where individuals with vocational education tend to be at a larger disadvantage over time.

The existing evidence does not argue against all vocational education. The
analysis in Hanushek, Schwerdt, Woessmann, and Zhang (2017) indicates that one of the elements of the improved life-cycle employment of those with general education is that they tend to get more ongoing education through their careers. Thus, programs that ensured continued education for those with vocational—that is, lifelong learning—could ameliorate the later life disadvantage of vocational education. But, as noted previously, the potential desirability of lifelong learning has not been matched by programs or institutions that have been very effective in its provision.

8.3.4 Higher Education and Elite Programs

Perhaps the most common educational policy initiative today is a call for expansion of college and university training. The growth models in table 8.1, however, indicate that once direct assessments of skills are included, school attainment is not significantly related to growth, and the coefficient on school attainment is very close to zero. These results hold even if the amount of tertiary education is separately considered (Hanushek 2016b).

These models, of course, do not say that schooling is worthless. They do say, however, that it is the portion of schooling directly related to skills that has a significant and consistent impact on cross-country differences in growth. The importance of skills and conversely the unimportance of just extending schooling that does not produce higher levels of skills has a direct bearing on human capital policies for both developed and developing countries.16

Of course, there are no scientists and engineers without higher education, so the insignificance for growth of having more college education appears strange. But, this can be interpreted as just a special case of the dynamic complementarities discussed previously (Cunha et al. 2006; Cunha and Heckman 2007). The idea is very simple—schools not only build upon early learning, but the path of output follows a multiplicative function. Students who enter college better prepared can be expected to learn more and be more productive on graduation, and this skill differential over less prepared students dominates any productivity effect of adding a greater number of less prepared graduates.

The one potential anomaly about tertiary education is that the growth models appear slightly different for just OECD countries. In the presence of knowledge capital, years of tertiary schooling has a positive effect (significant at the 10 percent level) for the twenty-four OECD countries in the sample (Hanushek 2016b). But this effect is entirely driven by the United States. If the United States is dropped, the estimated impact of higher education falls and is statistically insignificant.

16. Holmes (2013) also shows that neither the level nor the change in tertiary schooling for a larger group of countries is positively related to growth, even in the absence of knowledge capital measures.
How should this apparent impact in the United States be considered? It turns out that the United States has grown faster than would be predicted by the basic growth models with knowledge capital (i.e., the United States has a positive residual in the regression models of table 8.1). The United States is generally regarded as having the best universities, and this quality may make the difference. But, perhaps more importantly, the United States has been able to attract highly skilled immigrants. The latter argument is quite consistent with the previous growth results, because the measure of achievement of US students would not capture the skills of the immigrants. Hanson and Slaughter (chapter 12, this volume) find that 55 percent of PhD workers in the United States in science, technology, engineering, and mathematics (STEM) fields were foreign born. In other words, the United States is able to bring in highly skilled individuals who frequently get PhDs at US universities and then remain to work in the United States. In short, it is difficult to attribute the faster-than-expected growth in the United States just to the impact of higher education for US students.

Even though expanding higher education may not have any clear impact on growth rates, it would be expected to add to income inequality. With increases in the labor market returns to higher education, past expansion of college education has led to increased income inequality, and, while not certain in the future, might be expected have similar impacts in the future (Autor 2014).

A slightly different perspective focuses on whether the education system favors providing basic skills or developing high performers. The previous growth models uniformly considered just country-average skills. Yet, particularly in developing countries, there is often a large variance in performance with some very high performers and many very low performers (see Hanushek and Woessmann 2008). These choices can, however, also be seen in developed countries, as with the US accountability system that has emphasized bringing all students up to a minimum achievement level.

In terms of modeling growth, it is possible to separate the impacts of the proportion of high performers and the proportion with basic literacy as assessed by the cognitive skills tests. Importantly, both broad basic skills (“education for all” in terms of achievement) and high achievers have a separate and statistically significant impact on long-term growth (Hanushek and Woessmann 2015a). These estimates, while suggestive, do not answer the overall policy question about where to invest resources. To address that question, it is necessary to know more about the relative costs of producing more basic and more high performers. In fact, no analysis is available to describe the costs of producing varying amounts of skills.

17. The United States has also had generally the strongest economic institutions for growth—free and open labor and capital markets, limited government regulation, secure property rights, and openness to trade. These institutions could further add to the explanation of the faster-than-expected growth.
At the same time, in terms of the interplay between growth and equity, investing relatively more in the top-end skills would clearly lead to a wider income distribution compared with investing at the bottom end. Thus, understanding whether growth and equity move together or not depends on the magnitude of potential changes in the distribution of achievement.

8.4 Conclusions

This chapter considers how recent analyses of the role of skills in long-run economic growth and in individual earnings changes significant parts of the discussion of possible growth-equity trade-offs. The key driver for individual incomes and for economic growth from this work is the cognitive skills of the individual—skills that are developed not only in schools, but also in the family and in neighborhoods. This perspective changes conclusions about policies considerably.

Human capital is always mentioned as part of both aggregate growth and individual incomes. But, if human capital is thought of just as it is commonly measured—by school attainment—the policy discussions become very distorted. Moreover, in discussions of the potential growth-equity trade-offs that frequently occur, the message of improved human capital can be quite misunderstood.

The common policy discussion in education is largely around the quality of schools. That, in fact, is the correct focus because the skills that are important for growth and for individual incomes involve achievement and learning as opposed to just years spent in school.

While the distribution of income involves many factors, a key element is the distribution of earnings. In that regard, many policies that improve school quality will lead to growth-equity complementarities.

References

Contributors

Jaison R. Abel
Federal Reserve Bank of New York
50 Fountain Plaza, Suite 1400
Buffalo, NY 14202

David Autor
Department of Economics, E52-438
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139

Sandy Baum
Urban Institute
2100 M Street, NW
Washington, DC 20037

Canyon Bosler
Department of Economics
University of Michigan
238 Lorch Hall
611 Tappan Avenue
Ann Arbor, MI 48109-1220

John Bound
Department of Economics
University of Michigan
Ann Arbor, MI 48109-1220

Stijn Broecke
Organisation for Economic Co-operation and Development
2, rue André Pascal
75775 Paris Cedex 16
France

Mary C. Daly
Federal Reserve Bank of San Francisco
101 Market Street
San Francisco, CA 94105

David J. Deming
Harvard Graduate School of Education
Gutman 411
Appian Way
Cambridge, MA 02138

Richard Deitz
Federal Reserve Bank of New York
50 Fountain Plaza, Suite 1400
Buffalo, NY 14202

Douglas W. Elmendorf
Harvard Kennedy School
79 John F. Kennedy Street
Cambridge, MA 02138
John G. Fernald
Professor of Economics
INSEAD
Boulevard de Constance
77305 Fontainbleau, France

Maury Gittleman
US Bureau of Labor Statistics
2 Massachusetts Avenue NE, Suite 4130
Washington, DC 20212

Grey Gordon
Department of Economics
Wylie Hall, Room 105
Indiana University
100 S Woodlawn Ave
Bloomington, IN 47403

Nora Gordon
McCourt School of Public Policy
Georgetown University
306 Old North
37th and O Streets NW
Washington, DC 20057

Gordon H. Hanson
IR/PS 0519
University of California, San Diego
9500 Gilman Drive
La Jolla, CA 92093-0519

Eric A. Hanushek
Hoover Institution
Stanford University
Stanford, CA 94305-6010

Aaron Hedlund
Department of Economics
University of Missouri
118 Professional Building
909 University Avenue
Columbia, MO 65211

Bart Hobijn
Department of Economics
Arizona State University
PO Box 879801
Tempe, AZ 85287-9801

Caroline M. Hoxby
Department of Economics
Stanford University
Landau Building, 579 Serra Mall
Stanford, CA 94305

Charles R. Hulten
Department of Economics
University of Maryland
Room 3114, Tydings Hall
College Park, MD 20742

Dale W. Jorgenson
Department of Economics
Littauer Center, Room 122
Harvard University
Cambridge, MA 02138

Mun S. Ho
Resources for the Future
1616 P Street, NW
Washington, DC 20036

Frank Levy
Department of Urban Studies and Planning
Building 9-517
Massachusetts Institute of Technology
Cambridge, MA 02139

Shelley Lundberg
Department of Economics
University of California, Santa Barbara
Santa Barbara, CA 93106-9210

Kristen Monaco
US Bureau of Labor Statistics
2 Massachusetts Avenue NE, Suite 4130
Washington, DC 20212

Nicole Nestoriak
US Bureau of Labor Statistics
2 Massachusetts Avenue NE, Suite 4130
Washington, DC 20212
Glenda Quintini
Organisation for Economic Co-operation and Development
2, rue André Pascal
75775 Paris Cedex 16
France

Valerie A. Ramey
Department of Economics, 0508
University of California, San Diego
9500 Gilman Drive
La Jolla, CA 92093-0508

Jon D. Samuels
Bureau of Economic Analysis
4600 Silver Hill Road
Washington, DC 20233

Matthew J. Slaughter
Tuck School of Business
Dartmouth College
100 Tuck Hall
Hanover, NH 03755

Robert G. Valletta
Economic Research Department
Federal Reserve Bank of San Francisco
101 Market Street
San Francisco, CA 94105

Marieke Vandeweyer
Organisation for Economic Co-operation and Development
2, rue André Pascal
75775 Paris Cedex 16
France
Author Index

Aaronson, D., 23n1, 71, 72, 76n22, 78, 82, 85, 85n33, 88, 88n36, 93, 95, 100, 101, 102
Abbott, B., 364
Abel, J. R., 7, 150, 163n12, 174, 338
Abraham, K. G., 200, 204
Acemoglu, D., 10, 117, 120, 132, 141, 183, 183n1, 313, 314, 325, 328, 337, 338, 343, 344, 347n3, 486
Achenbach, T. M., 228
Aizer, A., 240
Almlund, M., 224, 227
Altonji, J. G., 69, 151, 301n7
Andrews, R. J., 363
Anger, S., 224, 225
Arcidiacono, P., 163
Aronson, J., 234
Arum, R., 179
Ashenfelter, O., 403n6
Aslin, R. N., 235
Athrey, K., 364
Avery, C., 424n28
Bacow, L. S., 403n5
Baily, M., 52
Baron-Cohen, S., 247
Barro, R. J., 295, 295n2
Barrow, L., 97
Barsky, R., 82
Bartel, A. P., 127
Baum, S., 397f
Baumeister, R. F., 234
Baumol, W. J., 358, 361
Beato, G., 402n1
Beaudry, P., 7, 15, 140n19, 154, 155n5, 178, 290, 314, 322, 326n8, 333, 337, 342
Becker, A., 227
Bell, B., 276
Belley, P., 364
Benhabib, J., 5n5, 295
Bennett, W. J., 358, 360
Benson, A., 290
Berg, A., 252, 293
Bertrand, M., 69
Besharov, D. J., 303n10
Bettinger, E., 403n5
Betts, J. R., 151, 388n26
Biddle, J. E., 70
Bils, M. J., 82
Blank, R. M., 69
Blau, F. D., 251, 252, 255, 258, 261, 261n8, 263, 264–65, 266n10, 269n14, 270n17
Blaug, M., 69n13
Blinder, A., 183
Blom, E., 151
Bloom, N., 129
Boatman, A., 416n19
Boeri, T., 69n10
Bol, T., 306
Bonikowski, B., 69
Borghans, L., 183, 234
Borjas, G., 468, 486, 489
Bouchard, T. J., Jr., 225
Bound, J., 183, 325, 466, 495, 497
Bowen, H. R., 359
Bowen, W. G., 358, 361, 403n5
Bowles, S., 219, 226
Brown, C., 202
Brueckner, M., 293
Brunello, G., 306
Brynjolfsson, E., 52, 143
Burtless, G., 88, 100
Byrne, D., 52

Cadena, B., 224
Cajner, T., 23n1
Caliendo, M., 224
Cao, Y., 338
Cappelli, P., 133n14
Card, D., 203, 315, 344, 350, 363, 403n6
Carneiro, P., 203
Cascio, E. U., 303
Casselman, B., 149n1
Castelló-Climent, A., 293–94
Chakrabarty, R., 362
Charles, K. K., 98n47
Chaudhary, L., 462
Checchi, D., 252
Chetty, R., 226, 303
Chevalier, A., 151
Cho, D., 34
Christensen, C. M., 402n1
Cingano, F., 252
Clotfelter, C. T., 359
Cobb-Clark, D., 224
Cohen, D., 295n2
Coleman, J. S., 303
Corrado, C. A., 136, 136f, 138, 138n16, 140f
Cowen, T., 52, 54, 403n5
Cramer, J., 34
Cunha, F., 233, 298, 307
Cunningham, A. F., 362, 363
Currie, J., 225

Da bla Norris, E., 293
Daly, M. C., 338
Datta Gupta, N., 230
Davis, J., 97

Davis, L. S., 363
Deitz, R., 7, 150, 163n12, 174, 338
Dellas, H., 388n26
Deming, D. J., 70, 183, 222, 248, 403n5, 406n9, 408n12, 414n18, 416
Demirci, M., 466
Den hart, C., 153
Dennett, J., 88, 100
Devroye, D., 251, 258, 264
Dickens, W., 70
Diewert, W. E., 78
Di Nardo, J., 252, 258, 259, 270n16, 270n17, 350
Dohmen, T., 233
Domar, E., 41
Doménech, R., 294
Doran, K., 468, 486
Dorn, D., 116n2, 158n8, 254, 264, 278, 326
Duggan, M., 209
Duncan, G. J., 224, 226n1
Dunstan, D. W., 209

Ebbesen, E. B., 224
Eberly, J., 364
Edelbrock, C., 228
Ehrenberg, R. G., 359, 362
Elsby, M. W., 151, 167
Eppe, D., 359, 377
Esteva, R., 290
Eyring, H. J., 402n1

Feenstra, R. C., 65n7
Feldman, D. C., 150
Fernald, J. G., 27, 52, 62, 62n3, 81, 92, 332n14

Ferraro, D., 82
Figlio, D., 403n5
Figueroa, E. B., 445n42
Filer, R. K., 223
Fillmore, I., 364
Firpo, S., 183, 258, 258n4, 270n17
Fisher, F. M., 121n3, 126n9
Fog g, N. P., 153
Forster, A. G., 306
Fortin, N. M., 164n13, 183, 252, 258, 258n4, 259, 270n16, 270n17
Fraumeni, B. M., 24, 65n7, 67, 71
Frederick, A. B., 363
Freeman, R., 251, 253, 258, 264, 276, 347, 497

Friedmann, E., 403n5
Fryer, R. G., Jr., 303
Fu, C., 364
Fukao, K., 25, 25n2, 54
Galar, O., 294n1
Galston, W. A., 149n1
Gandal, N., 486
Garnero, A., 270
Garriga, C., 364
Gauthier-Loiselle, M., 467
Gertler, P., 226
Gibbons, R., 70n15
Gintis, H., 219, 226
Gittleman, M., 200, 202
Goldberg, L. R., 223
Gollop, F. M., 24, 65n7, 67, 71
Goos, M., 288, 325
Gordon, R., 52, 54
Gottfriedson, M. R., 236
Gradstein, M., 293
Green, D. A., 7, 15, 140n19, 154, 155n5, 178, 290, 314, 322, 326n8, 333, 337, 342
Green, F., 151
Griffith, E., 465n1
Griliches, Z., 4, 9, 10, 61, 119, 120
Grogger, J., 479
Gupta, A., 362
Gupta, S., 52
Hall, B., 141
Haltiwanger, J. C., 142
Hamermesh, D. S., 70
Handel, M. J., 134, 184, 185, 190, 200n16, 204
Hanson, G. H., 116n2, 326, 479, 486
Harcourt, G. C., 124
Harrington, P. E., 153
Hart, B., 303
Hart, C., 403n5
Harvey, J., 150
Haskel, J., 116n2
Hathaway, I., 142
Hecker, D., 445n43
Heineck, G., 223, 224
Heisz, A., 151
Heller, D. E., 362
Hellerstein, J. K., 69, 69n12
Hennessey, J. L., 52, 52n9
Hersch, J., 151
Hill, M., 403n5
Hirschi, T., 236
Ho, A. D., 403n5
Ho, M. S., 24, 25, 25n2, 26, 27n4, 28, 30, 39, 40, 41n7, 52n8, 54, 62, 63n4, 65n7, 71
Hobijn, B., 151, 167
Hoekstra, M., 363
Holdren, A. E., 27
Holmes, C., 298, 307n16
Horn, M. B., 402n1
Howell, D. R., 276
Hoxby, C. M., 403n5, 405n8, 418, 424n28, 426
Hoynes, H., 167
Hu, L., 231n
Huebler, F., 276
Hulten, C. R., 122n4, 123, 131, 136, 136f, 137, 138, 138n16, 140f
Humphries, J. E., 7n6, 132n12
Hungerford, T., 70
Hunt, J., 467
Hurst, E., 98n47
Ichniowski, C., 127
Ingram, B. F., 200, 204
Inklaar, R., 65n7
Ionescu, F., 364, 373, 374, 374n17
Isaac, M., 287
Jaeger, D., 316, 316n1
Jaggars, S. S., 403n5
Jarmin, R. S., 142
Jasso, G., 466
Jensen, J. B., 183
John, O. P., 244, 245
Johnson, G. E., 183, 325, 347, 497
Johnson, M. T., 97
Jones, C. I., 62, 62n3, 92, 467
Jones, J. B., 364
Jones, P., 69n12
Jordan, M., 466n3
Jorgenson, D. W., 4, 9, 10, 24, 25, 25n2, 26, 26n3, 27n4, 28, 30, 39, 40, 41n7, 52n8, 54, 54n12, 61, 62, 63n4, 65n7, 67, 71, 119, 120
Jovicic, S., 252, 253, 258, 263–64, 276, 277
Juhn, C., 258, 264, 278
Kahn, L. B., 151
Kahn, L. M., 251, 252, 255, 258, 261, 261n8, 263, 264, 265, 266n10, 269n14, 270n17
Kampelmann, S., 270
Kautz, T., 134n15, 220, 225, 233, 235, 245, 246
Keane, M. P., 364
Keightley, M. P., 364
Kerr, S. P., 8, 142, 467, 486
Kerr, W. R., 8, 142, 485, 486, 497
Keys, B., 224
Khanna, G., 497, 498
Kidd, C., 235
Kim, D. D., 27
Kimko, D. D., 219
Kletzer, L. G., 183
Koshal, M., 362
Koshal, R. K., 362
Koubi, V., 388n26
Kroft, K., 34
Krueger, A. B., 34, 70, 223, 252, 313, 325
Krueger, D., 306
Krugman, P., 497
Kumar, K. B., 306
Kuziemko, I., 164n13
Kuznets, S., 25, 293

Landes, D. S., 3
Lang, K., 69n14
Langdon, D., 469
Lausten, M., 230
Lee, D. S., 270n16
Lee, J.-W., 295, 295n2
Lemieux, T., 69n11, 70, 183, 252, 258, 258n4, 259, 260, 270n16, 270n17, 316, 325, 344, 363
Lerman, R. I., 305
Lettau, M. K., 202
Leuven, E., 251, 252, 253, 255, 264, 265, 266n10, 269n13, 269n14, 287
Levine, R., 296
Levitt, S. D., 303
Levy, F., 117, 133, 143, 183, 186, 198, 200, 254, 264, 288, 290, 313, 326n8, 327
Lewis, E., 486
Li, J., 363
Light, A., 69
Lincoln, W. F., 467, 485, 486, 497
Lindley, J., 151, 314, 316n2, 325, 333
Lindqvist, E., 224
Litan, R. E., 142
Lochner, L. J., 69n11, 347, 364
Loehlin, J. C., 225
Long, B. T., 363, 416n19
Looney, A., 402n1
Lovenheim, M. F., 363, 403n5, 406n9, 408n12, 416
Lowell, B. L., 495, 498
Lucas, R. E., Jr., 5, 123, 132n13, 141, 294
Lucca, D. O., 363
Lundberg, S., 134n15, 224, 235
Lyndaker, A. S., 27
Ma, J., 388n26, 395f, 396f, 397
Mabutas, M., 263
Machine, S., 314, 316n2, 325, 333
Maestas, N., 209
Magnuson, K., 224, 226n1
Maire, J., 141
Manchester, J., 209
Mani, A., 234
Mankiw, N. G., 294
Manning, A., 270n16, 288, 325
Manyika, J., 52
Margo, R. A., 343
Marr, J., 52n9
Mayerhauser, N. M., 27
McAfee, A., 52, 143
McClellan, H., 305n13
McCullough, S. H., 27
McFarland, L., 388n26
McKee-Ryan, F. M., 150
McPherson, M. S., 362, 403n5
Medoff, J., 202
Meghir, C., 151
Meijers, C., 234
Memoli, M. A., 287
Mian, A., 162n12
Miller, D. L., 167
Miller, T., 436n34
Mincer, J. A., 67, 300
Miranda, J., 142
Mischel, W., 224
Modesto, A. S., 88, 100
Mohnen, P., 140
Monge-Naranjo, A., 364
Morales, N., 497, 498
Mueller, G., 223
Mullainathan, S., 69
Mullen, K. J., 209
Munnell, A., 200
Muraven, M., 234, 313
Murnane, R. J., 117, 133, 143, 183, 186, 198, 200, 254, 264, 288, 326n8, 327
Murphy, K. M., 183, 253, 258, 264, 265, 343–44, 347, 363
Nadauld, T., 363
Nandi, A., 223
Nelson, R. R., 5, 124n6, 130, 302
Neumann, G. R., 200, 204
Neumark, D., 69, 69n12
Nickell, S., 276
Nicoletti, C., 223
Notowidigdo, M. J., 98n47
Nunley, J. M., 167
Nyhus, E. K., 223
Oaxaca, R., 69
Oldenski, L., 183
Oliver, S., 52
O’Mahony, M., 65n7
Oosterbeek, H., 251, 252, 253, 255, 264, 265, 266n10, 269n13, 269n14, 287
Oreopoulos, P., 151, 164n13
Osborne, M., 226
Ostry, J. D., 252, 293
Paccagnella, M., 252, 258, 261, 263, 264, 277, 287
Pager, D., 69
Palmeri, H., 235
Papageorge, N. W., 229n4, 235
Parker, J. A., 82
Patterson, H. A., 69, 300n6
Patterson, D. A., 52, 52n9, 408n12
Patterson, R., 403n5, 406n9, 416
Pena, A. A., 252, 255, 258, 264, 277, 287
Peri, G., 467
Peterson, N., 153n3
Petty, W., 300
Phelps, E. S., 5, 130, 302
Phipps, S., 164n13
Pickett, K., 252
Pierce, B., 192, 200, 202, 258, 264
Pierret, C. R., 301n7
Pillai, U., 52
Pinto, R., 226
Plug, E., 223
Pons, E., 223
Porter, E., 486n8
Pozzoli, D., 230
Prescott, E. C., 129
Price, B., 133, 137f
Proper, K. I., 209
Psacharopoulos, G., 69, 300n6
Puma, M., 304
Ramey, G., 6
Ramey, V. A., 6
Ransome, M., 69
Raskoff Zeiss, A., 224
Reardon, S. F., 303
Renelt, D., 296
Reynolds, A. J., 303
Risley, T. R., 303
Rizzo, M. J., 362
Robe, J., 153
Rocco, L., 306
Roksa, J., 179
Romano, R., 359, 377
Romer, D., 294
Romer, P. M., 5, 130, 141, 294
Ronda, V., 229n4, 235
Rosen, S., 497
Rosenthal, S., 25n2
Rubinstein, Y., 223
Ruggles, S., 156
Rush, M., 403n5
Rustichini, A., 227
Ryan, P., 306
Ryckx, F., 270
Ryoo, J., 497
Sadeghi, A., 142
Şahin, A., 151, 167
Salomons, A., 288, 325
Salverda, W., 252
Samuels, J., 25, 25n2, 27n4, 28, 39, 40, 54, 65n7, 71
Samuelson, P. A., 121, 123, 497
Sand, B. M., 7, 15, 140n19, 154, 155n5, 178, 290, 314, 322, 326n8, 333, 337, 342
Savelyev, P., 226
Schaller, J., 167
Schanzenbach, D. W., 303
Schettkat, R., 253, 276
Schkade, D., 223
Schmidt, S. J., 363
Schreyer, P., 24, 25, 28, 29
Schultz, T. W., 302
Schweinhart, L. J., 303
Schwerdt, G., 301, 301f, 302, 304, 306, 307
Segal, C., 224
Shapiro, M. O., 362
Shaw, K. L., 127
Shen, K., 363
Sherk, J., 97
Shonkoff, J. P., 225
Sichel, D., 52, 136, 138
Sieg, H., 359, 377
Silva, O., 70
Simone, S., 362
Simpson, N., 364, 373
Singell, L. D., Jr., 362
Singer, N., 287
Skrentny, J. D., 69n14
Slaughter, M., 486
Smith, A., 300
Smith, C. L., 270n16
Smith, J., 305n13
Smith, S., 27
Solis, B., 398
Solon, G., 70, 82
Solow, R. M., 9, 25, 119, 121, 126n9, 131, 131n10
Song, J., 209
Soto, M., 295n2
Speer, J. D., 151
Spiegel, M. M., 5n5, 295
Spletzer, J. R., 142, 200, 204
Srivastava, S., 244, 245
Stafford, F. P., 497
Steele, C. M., 234
Stiglitz, J., 252
Stinebrinkner, R., 164
Stinebrinkner, T. R., 164
Stiroh, K. J., 24, 25, 26, 30, 39, 41n7, 52n8, 54
Stixrud, J., 7n6, 70, 220, 223
Stone, J. A., 362
Storesletten, K., 373, 373n14
Strand, A., 209
Strangler, D., 142
Strassner, E. H., 27
Streich, F. E., 403n5
Su, Y., 150, 174
Suen, W., 258
Sufi, A., 162n12
Sullivan, D., 71, 72, 76n22, 78, 85, 85n33, 88n36, 93, 95, 101, 102
Summers, L. H., 70
Tabarrok, A., 403n5
Taber, C., 347
Talan, D. M., 142
Telmer, C., 373, 373n14
Terrell, D., 445
ter Weel, B., 183, 234
Timmer, M. P., 25, 25n2, 54, 65n7
Tinbergen, J., 264, 344
Titus, M. A., 362
Todd, P. E., 69n11
Troske, K. R., 69
Tsangarides, C. G., 252, 293
Turner, N., 338, 363
Turnley, W. H., 150
Uhlendorff, A., 224
Ureta, M., 69
Urzua, S., 7n6, 70, 220, 223
van der Ploeg, H. P., 209
van de Werfhorst, H. G., 306
van Ophem, H., 251, 252, 253, 255, 264, 265, 266n10, 269n13, 269n14, 287
van Ours, J., 69n10
Van Reenen, J., 129
Vedder, R., 153
Veramendi, G., 7n6, 132n12
Vestman, R., 224
Visscher, M., 129
von Wachter, T., 151, 209
Vu, K. M., 26n3, 54n12
Vytlacil, E. J., 203
Waldrop, M., 402n1
Wasshausen, D. B., 27
Weil, D., 294
Weinberg, B. A., 183
Weinberger, C., 183
Weiss, A., 69
Welch, F., 302, 343–44
West, M. R., 245
Western, B., 69
Wiederhold, S., 301, 301f, 302, 304
Wilkinson, R., 252
Willett, J. B., 183
Winston, G. C., 360, 376
Winter, S. G., 124n6
Wissell, M., 151
Witte, J. F., 303
Wolf, M., 445n43
Wolpin, K. I., 364
Wolverton, M., 367n10
Woods, R. A., 445n42
Woolley, A. W., 247
<table>
<thead>
<tr>
<th>Author</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wright, B. R.</td>
<td>236</td>
</tr>
<tr>
<td>Wunsch, C.</td>
<td>305n13</td>
</tr>
<tr>
<td>Xu, D.</td>
<td>403n5</td>
</tr>
<tr>
<td>Yang, F.</td>
<td>364</td>
</tr>
<tr>
<td>Yannelis, C.</td>
<td>402</td>
</tr>
<tr>
<td>Yaron, A.</td>
<td>373, 373n14</td>
</tr>
<tr>
<td>Yen, H.</td>
<td>153</td>
</tr>
<tr>
<td>Yin, L.</td>
<td>403n5</td>
</tr>
<tr>
<td>Yun, M.</td>
<td>258</td>
</tr>
<tr>
<td>Zafar, B.</td>
<td>151, 163, 362</td>
</tr>
<tr>
<td>Zhang, L.</td>
<td>306, 307</td>
</tr>
<tr>
<td>Zheng, Y.</td>
<td>229n4, 235</td>
</tr>
<tr>
<td>Zhu, Y.</td>
<td>151</td>
</tr>
<tr>
<td>Zoghi, C.</td>
<td>65n7, 66, 77, 80, 80n28</td>
</tr>
</tbody>
</table>
Subject Index

Page numbers followed by “f” or “t” refer to figures or tables respectively.

activity-analysis approach to production: activities and measurement of GDP and, 130–31; aggregation and dynamics of, 128–30; model for, 123–28
Add Health study (National Longitudinal Study of Adolescent to Adult Health), 227, 231–32, 231n5
administrative records, 222–23
age, of worker: compensation by, 38, 38f; during Investment Boom, 38–39
Bureau of Economic Analysis (BEA): benchmark revision of, in 2014, 27; extension of output and intermediate accounts, 27–28; system of industry accounts developed by, 27
capital, composition of, structural change in, 135–38
capital, human. See human capital
capital, knowledge. See knowledge capital
capital, role of: postwar US economic growth and, 26; and US economic growth since 1947, 25
capital inputs, changing structure of, 28–30
Carolina Abecedarian Project, 303
cognitive skills: assessment of, in PIAAC, 254–55; data used for study, 253–58; role of, in explaining income inequality, 251–52; vs. task-based skills, 254–55. See also noncognitive skills; skills cognitive skills, wage inequality and, background information, 251–53
Coleman Report, 302–3
college earnings premiums. See higher education wage premiums
college graduates: college majors and underemployment, 168–74, 169–70t; demand for, after Great Recession, 155–56, 155f; labor market for, following Great Recession, 151–52; low-skilled jobs taken by, by major, 170–71t; probability of underemployment among, by selected majors, 172f; probability of working low-skilled jobs among, by selected majors, 173f; share of underemployed recent, by occupation category, 159t; transitioning to better jobs and, 174–77; types of, prone to underemployment, 160–68; types of jobs held by underemployed, 156–59, 157t; types of jobs taken by, 159–60; underemployment among, 153–55, 154f; underemployment and, introduction, 149–51; unemployment among, 152–53. See also higher education wage premiums
college tuition: data and estimation, 371–79; empirical literature, 361–64; introduction to, 357–59; literature employing quantitative models of higher education, 364; model constructed for, 359–61, 364–70; quantitative findings, 359; results of model, 379–91

crime, male impulsivity and, 236–39

Dictionary of Occupational Titles (DOT), 184–86

disability determination: defined, 185; SSA process for, 185–86

Domar weight, defined, 41

early childhood education, growth-equity outcomes and, 302–4

Early Training Project, 303

economic growth, US: endogenous growth models of, 294–95; future, 48–53; growth of labor input, as determinant of, 26; human capital and, 219–22, 294, 295–96; human capital development and, 3–4; income distribution and, 293; neo-classical models of, 294–95; skill development and, 117; sources of, 39–47; subperiods of, 25. See also GDP growth; postwar US economic growth education: importance of, 117–18; macroeconomic link between GDP growth and, 9–11; supply and demand for, 5–8; vocational, growth-equity outcomes and, 305–7. See also online postsecondary education; skill development

educational attainment, 23; compensation by, 35, 35f; economic growth and, 117; as measure of human capital, 219–20; structural changes in, 131–32; of twenty-five to thirty-four age group, 32, 33f; of US workers, 32, 33f

employment participation rates, by gender, age, and education, 33–34, 34f

employment rates: by average skills and, 277–78, 277t; defined, 23; by skill group and country, 275–76, 275t. See also unemployment rates

engineering. See STEM (science, technology, engineering, and mathematics) activities

foreign-born workers, in STEM occupations, 477–86; age of US entry in, 483–84; explanations for comparative advantage of, 484–86; revealed comparative advantage of, 479–83; in US economy, 477–79; wage differences between native-workers and, 486–92

GDP growth: channels through which human capital affects, 4–5; human capital’s contribution to, 3–4; macroeconomic link between education and, 9–11. See also economic growth, US globalization, structural changes in US economy and, 115–17

Great Recession period (2007–2014), 25; educational attainment and, 32; labor market for college graduates following, 151–56; labor-quality growth and, 32

growth-equity outcomes, 293; early childhood education and, 302–4; higher education and, 307–9

Head Start programs, 304, 304n11

higher education, growth-equity outcomes and, 307–9

higher education wage premiums: assessing changes in, 318–21; college tuition and, 363–64; data and descriptive statistics for, 315–18; expansion of, 313–14; explanations for stalling of, 314–15; potential explanations for flattening of, 325–33; robustness checks and disaggregation by age and gender, 321–25; summary of, over time, 325. See also college graduates; polarization; skill downgrading; wage gaps

human capital: accumulation of, and recent US growth, 1–2; contribution of, to GDP growth, 3–4; economic growth and, 219–22, 294, 295–96; educational attainment as measure of, 219–20; including noncognitive skills to, 239–40; types of channels of, which affects GDP growth, 4–5. See also knowledge capital; noncognitive skills

immigrant workers. See foreign-born workers, in STEM occupations
impulsivity, male, and crime, 236–39
income distribution: cognitive achievement and, 300–301; factors of, 299–300; numeracy skills and, 301–2, 301f; school attainment and, 300
income inequality. See wage inequality
inequality of, 39–47
innovation, 5; relative unimportance of, 25
institutional characteristics, wage inequality and, 270–74
intellectual property investments, share of, in GDP, 31f
Investment Boom period (1995–2000), 25; compensation of workers, by age, during, 38
Jamaican Supplementation Study, 226
Jefferson, Thomas, 5
Jobless Recovery period (2000–2007), 25
jobs: higher productivity, attaining, after online enrollment, 445–53; skills requirements and, 11–12; types of, held by underemployed college graduates, 156–59, 157t; types of, prone to underemployment of college graduates, 160–68; types of, taken by college graduates, 159–60
knowledge capital: estimated growth impacts of, 298–99; long-run growth and, 296–98. See also human capital
time for US economy and, 115–17
information technology (IT) industries, economic impact of, 39–47
innovation, 5
individual earnings, 299–302
inequality. See wage inequality
information technology (IT), structural changes in US economy and, 115–17
innovation, 5
institutional characteristics, wage inequality and, 270–74
intellectual property investments, share of, in GDP, 31f
Investment Boom period (1995–2000), 25; compensation of workers, by age, during, 38
knowledge capital: estimated growth impacts of, 298–99; long-run growth and, 296–98. See also human capital
knowledge economy, 120
knowledge spillovers, 5
Kuznets curve, growth-equity outcomes and, 293–94
labor characteristics, by industry, 36–37t
labor inputs: changing structure of, 30–39; growth of, as determinant of US economic growth, 26; postwar US economic growth and, 26; and US economic growth since 1947, 25
labor market institutions: skills and, 270–74; wage inequality and, 274–77
labor-quality growth: contributions of education, age, and gender to, 31f, 32f; defined, 63–65; historical, 78–83; measurement of, 65–78; overview of, 61–63; in Postwar Recovery period (1947–1973), 30–31; projecting, 83–92
lifelong learning, growth-equity outcomes and, 304–5
literature: economics, on noncognitive skills, 223; empirical, on college tuition, 361–64; employing quantitative models of higher education, 364; human capital, and noncognitive skills, 222–27; on noncognitive skills, 220
male impulsivity, crime and, 236–39
mathematics. See STEM (science, technology, engineering, and mathematics) activities
Mischel, Walter, 224
National Income and Product Accounts (NIPAs), 24; benchmark revision of, in 2013, 27
National Longitudinal Study of Adolescent to Adult Health. See Add Health study (National Longitudinal Study of Adolescent to Adult Health)
National Longitudinal Survey of Youth (NLSY97), noncognitive skills and adult outcomes in, 227–30
“Nation’s Report Card” survey, 2
neoclassical growth-accounting model, 119–20; parables about, 120–23
noncognitive skills: adding, to human capital, 239–40; adult outcomes in NLSY97 and Add Health, 227–30; alternative terms for, 220–21; defined, 225; economic outcomes and, 219–20; economics literature on, 223; human capital literature and, 222–27; literature on, 220; measurement of, 233–39; metric categories of, 222–23; personality and, 223–24; self-control and, 224; sources of, 225–26. See also cognitive skills; human capital; skills
Occupational Information Network (O*NET) database, 153, 185

Occupational Requirements Survey (ORS): *Dictionary of Occupational Titles* and disability determination, 184–86; evidence from preproduction sample, 188–99; potential of, for research, 208–10; procedures and sampling, 186–88; research potential of, 208–19; safety outcomes and, 205–8; wages and, 199–204

online postsecondary education: attaining higher productivity jobs after enrollment in, 445–53; characteristics of students enrolled in, 409–12; costs and payments for, undergraduates vs. graduate students, 421–26, 421t, 422t; data for, 406–9; earnings before and after enrollment in, 426–34, 427f, 429f, 430f, 431f, 432f; empirical strategy for estimating return on investment to, 434–39; federal taxpayer’s point of view of, 453–54; findings on returns on return on investment to, 440–45; highest degree offerings and characterizations of, 414–18; length of enrollment in, 418–20; locations of students enrolled in, 412–14, 415t; promise and perils of, 401–3; recent, explosive growth in, 403–6. See also education; skill development

ORS. See *Occupational Requirements Survey (ORS)*

parent/teacher reports, 222

Perry Preschool Project, 226, 303

personality, economic studies of, 223–44

PIAAC (Programme for the International Assessment of Adult Competencies), 2, 253–58, 300–301; assessment of cognitive skills in, 254–55

polarization, 314, 315; basics of, 325–28; descriptive evidence of, 328–33; inequality, skills, and, 12–15; wage effects of, 333–37. See also higher education wage premiums

postwar US economic growth: analysis of, 25; human capital accumulation and, 1–2; productivity growth as determinant of future, 26–27; role of growth in capital and labor inputs and, 26. See also economic growth, US

preschool programs, growth-equity outcomes and, 302–4

production, activity-analysis approach to, 123–31

productivity, 4; international standards for measuring, 24; measurement, 24; prototype for US national accounts, 24–25; and US economic growth since 1947, 25

productivity growth, as determinant of future US economic growth, 26–27

Project Star, 226

return on investment (ROI), to online education: empirical strategy for estimating, 434–40; findings on, 440–45

safety outcomes, Occupational Requirements Survey and, 205–8

SBTC. See skill-biased technological change (SBTC)

science. See STEM (science, technology, engineering, and mathematics) activities

self-assessments, 222

self-control: economic studies of, 224; male impulsivity and, 236–39; noncognitive skills and, 236–39

skill-biased technological change (SBTC), 4–5, 117–18, 325–26

skill development: economic growth and, 117; importance of, 117. See also education; online postsecondary education

skill downgrading, 314, 315, 326–28; descriptive evidence, 328–33; wage effects of, 333–37. See also higher education wage premiums

skills: cross-country, 296; inequality, polarization, and, 12–15; labor market institutions and, 270–74; requirements, and jobs, 11–12; role of, and skills prices, 258–64; role of demand and supply and, 264–69; supply and demand for, 5–8; supply of, 15–17; task-related, structural changes in, 133–34. See also cognitive skills; noncognitive skills

skills prices, role of skills and, 258–64
social capital, 5
Social Security Administration (SSA), 184
sources-of-growth model: firm dynamics, 141–43; with intangible capital, 138–41
specific vocational determination, 185
STEM (science, technology, engineering, and mathematics) activities, 134–35
STEM (science, technology, engineering, and mathematics) occupations, in US: comparative advantage in, 474–77; data for, 469–70; employment in, 470–74; foreign-born workers in, 477–86; introduction to, 465–69; wage differences between native- and foreign-born workers, 486–92
structural changes: in composition of capital, 135–38; in educational attainment, 131–32; in task-related skills, 133–34; in US economy, 115–17, 116f
task-based skills, vs. cognitive skills, 254–55
task-related skills, structural changes in, 133
technical change, skill-biased, 4–5
technology. See STEM (science, technology, engineering, and mathematics) activities
tuition. See college tuition
underemployment, introduction to, 149–51.
See also college graduates
unemployment rates, 275t; by skill group and country, 276. See also employment rates
US economy: foreign-born workers in, 477–79; structural changes in, 115–17, 116f
vocational education, growth-equity outcomes and, 305–7
wage compression, employment effects and, 274–77
wage gaps, 313; composition-adjusted estimates for, 318–21; between native- and foreign-born workers in STEM occupations, 486–92. See also higher education wage premiums
wage inequality, 270; cognitive skills and, background information, 251–53; controlling for institutional characteristics in explaining, 270–74; data used for study, 253–58; labor market policies and, 274–77; polarization, skills, and, 12–15; role of cognitive skills in explaining, 251–52; role of demand and supply in explaining, 264–69; role of differences in skills in explaining, 258–64; role of skills endowments and skills prices in explaining, 261–64, 262t
wage premiums. See higher education wage premiums
wages, Occupational Requirements Survey and, 199–204
worker productivity, 4. See also productivity workers, foreign-born, in STEM occupations, 477–86