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Efficient Estimators for Regressing Regression Coefficients* 

ERIC A. HANUSHEK** 

As a natural outgrowth of the proliferation of large- 
scale empirical analyses, there is an increased interest 
in unifying the results of related regression analyses. 
In particular, when similar models have been estimated 
under a variety of circumstances, it is often desirable to 
explain any differences in results. However, systemati- 
cally analyzing such differences is often difficult because 
new statistical problems are introduced when one 
relates a series of different estimated relationships. 
The specific case of efficiently estimating a regression 
model which has an estimated regression coefficient as 
the dependent variable is developed here. 

Examples of cases in which the results of previous 
regression analyses become the focal point of a second 
analysis are easy to find. Wachter (1970) first estimated 
the relationship between relative wage rates and 
aggregate unemployment rates for a series of 19 two- 
digit manufacturing industries and subsequently wished 
to test a series of hypotheses about why different 
industries would respond differently to varying un- 
employment situations. Askari and Cummings (1971) 
tested a series of models explaining variations in 
agricultural supply elasticities across countries and 
crops where the supply elasticities were gathered from 
the elasticity estimates made in several studies by 
different individuals. Hanushek has analyzed how 
differences in the monetary returns to schooling relate 
to characteristics of different metropolitan labor 
markets using the separate returns to schooling es- 
timated for 121 metropolitan areas in Hanushek 
(1973). Each of these cases involves estimating a 
regression model where the dependent variable is itself 
a regression coefficient. 

However, when interest centers upon variations in 
behavioral parameters which themselves have been 
estimated through prior applications of regression 
analysis, ordinary least squares is no longer the most 
appropriate estimation technique. The dependent 
variable-a regression coefficient-is observed with 
varying sampling errors, and this will lead to heter- 
oscedastic errors in the second regression analysis. By 
using information about the estimated variance of this 
sampling error, it is possible to obtain more efficient 
parameter estimates than those of ordinary least 
squares in the second analysis. 

Consider the case where T different parameters ,i 
are estimated for T different samples where the model 
in each sample is 

Yi = o3Zi + wi (1) 

(Yi and Zi are vectors of observed variables within 

Sample i, wi is a vector of stochastic terms for Sample i, 
and oi is the scalar parameter of interest in Sample i). 
Further, the real interest centers upon a second stage 
model of the structure of the At's, and we wish to 
estimate a model such as 

5 = Xy + v. (2) 

where 5 is a (T X 1) vector of structural parameters 
from Equation 1, X is a (T X K) matrix of observa- 
tions for K exogenous variables, y is a (K X 1) vector 
of second stage parameters, and v is a (T X 1) vector of 
stochastic elements. However, o is not observed. 
Instead, we observe 5, the set of estimated coefficients 
from Equation 1, where 5 = 5 + u and u is a vector 
of sampling errors in the regression estimates of Equa- 
tion 1 over the T samples. Even if E (vv') = o2I, the 
error variance for the second stage regression analysis 
will not be homoscedastic, and, thus, ordinary least 
squares estimates will be inefficient.' 

The problem is one of estimating parameters of the 
model 

5 = Xy + (u + v) = Xy + c. (3) 

Assuming that u and v are independent, that E(vv') = 

2I, and that 
((t2 = j 

E(uiuj) = 
t@tj i h j 

we have 

r C12 (12 WIT 

0+ 2 O.2 
2 

E ')= aQ= . : 2. 

COT2 
1+ 2 a2 (4) 

* This problem was first brought to my attention by Franklin 
M. Fisher. 

** Cost of Living Council, Office of Price Stabilization, Analy- 
sis Div., 2000 M St., N.W., Washington, D.C. 20508. 

1 The key element in this problem is interest in a dependent 
variable which is observed with some sampling error which differs 
among observations. There are other cases, generally less inter- 
esting, where this may also be important. For example, the first 
stage model (Equation 1), may be a single regression analysis 
which includes a large set of dummy variables with Equation 2 
being a model explaining differences in the parameters of these 
qualitative variables. An example of this can be found in Hanu- 
shek (1972), where estimates of the value added in education of 
individual teachers are made and an attempt is made to explain 
why some teachers are better than others. This adds the compli- 
cation that the ui will not be independent of each other but can 
still be handled within the framework below. In general, however, 
this situation can be handled through direct estimation of a re- 
duced form model for Equation 1 and 2. A second case arises 
when the dependent variable consists of sampled values as with 
Census data on individual characteristics such as income. The 
Census of Population, relying on 5 and 20 percent samples, has 
sampling variances related to number of observations in a given 
cell. The differences in the variance in these sampling errors will 
generally be small, thus making the problem less important. 
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When E( r') is known, Aitken, or generalized least 
squares, estimators can be used to obtain efficient 
estimators of 'y. In this particular situation, E( P') is 
only partially known, but it is possible to use a two- 
round estimation procedure which estimates the missing 
elements of E(e ,') in order to apply generalized least 
squares. 

Since we normally have estimates of E(uu') from 
the estimated coefficient variables in the regression 
analysis of Equation 1, we need only an estimate of o2 

in order to apply generalized least squares. Consider 
estimating Equation 2 with ordinary least squares. The 
expected value of the estimated error variance using the 
calculated residuals (e?) is2 

E(S2) =E (Xei\ 02 trQ - tr(X'X)-1(X/QX) k kT -KJ T -K 

(5) 
If Q = I - F, we find that 

tr(X'X)'-(X'LX) = K - tr(X'X)-'X'FX, (6) 

and 

trS = T + 2 (7) 

If we further define G = 02F, and substitute (6) and 
(7) into (5), we have 

T + - (K - !tr(X'X) -(X'GX)) 

E(S2) = a2 
T-K 

(8) 

2 The development of Equations 5-7 can be found in Gold- 
berger (1964), pp. 238-239. His normalization of Q is not used 
here. 

The first stage model(s) provide an estimate of - G 
and 2Xoi, and the first round OLS estimates provide 
s2. Thus, we can estimate o2 by 

2 s2 (T - K) - ci2- tr (X'X)-'X'GX O' 
~~T -K . (9) 

By substituting estimated values of o2, WC2 and wij into 
(4), a second-round estimate of (2) can be made using 
Aitken estimators. When the observations of g come 
from parameter estimates in a series of different equa- 
tions, G reduces to a diagonal matrix. This two round 
estimation will then provide asymptotically efficient 
estimates of the second stage parameters.3 

3The estimates are asymptotically best except when there are 
lagged endogenous variables in Equation 2; cf. G. S. Maddala 
(1971). However, this exception is not very relevant for the type 
of problem considered here. 
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A Note on Estimating Covariance Components* 
S. R. SEARLE** and T. R. ROUNSAVILLE*** 

Abstract 

A well-known formula for expressing a covariance in terms of 
variances is shown to hold true for estimating components of 
covariance. 

Covariance components are defined by Rao [1971] 
as the off-diagonal elements of a variance-covariance 
matrix that is not diagonal. The more usual way of 
looking at covariance components, that familiar to 
geneticists for example, is of having two random 
variables X1 and X2, observed in pairs, with components 

of covariance being the components of the covariance 
between X1 and X2 defined in the same way as are the 
components of variance of X1 and of X2. A simple 
illustration is the one-way classification. If xiij and X2ij 

are measurements on the jth unit of the ith class, the 
customary random effects models are 

xi gi = ui + ai + eij and X2ij = 2 + i +ij (1) 

where 41 and /12 are overall means, cai and ,B are the 
random effects due to the ith class and ei1 and Eij are the 
error terms, the variance components being 0o>2, 0y#2 and 
0, a2 2 respectively. The covariance components are 
then o-a, = cov(aei, Oi) for all i and 0ee = cov(eij, Eij) 
for all i and j, so that 0.1ij,2ij = aO, + oeE= o-,y for 
all i and j. 
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